
Towards Checkpoint Placement for Dynamic Memory
Allocation in Intermittent Computing

Nicholas Shoemaker
nshoemaker@branfordschools.org

Branford High School
Branford, CT, USA

Ruzica Piskac
ruzica.piskac@yale.edu

Yale University
New Haven, CT, USA

Mark Santolucito
msantolu@barnard.edu

Barnard College, Columbia University
NYC, NY, USA

Abstract
Energy harvesting allows computational devices to run with-
out a battery, opening new application domains of comput-
ing. Such devices work under an intermittent computing
model, where the system may power cycle several times a
second. To ensure progress, intermittent computing uses
checkpoints, with much work being dedicated to this di-
rection. However, no existing approaches handle programs
using dynamically allocatedmemory in the intermittent com-
puting model. We pose this as a challenge area, demonstrate
the complexities of checkpointing in this space, and propose
key characteristics of an effective solution.

CCS Concepts: • Hardware→ Power and energy.

Keywords: intermittent computing, memory analysis

ACM Reference Format:
Nicholas Shoemaker, Ruzica Piskac, and Mark Santolucito. 2020.
Towards Checkpoint Placement for Dynamic Memory Allocation in
Intermittent Computing. In Proceedings of the 11th ACM SIGPLAN
International Workshop on Tools for Automatic Program Analysis
(TAPAS ’20), November 17, 2020, Virtual, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3427764.3428323

1 Introduction
Intermittent computing is a model of computation where the
system experiences frequent power failures - possibly many
times a second. A system will experience power failures
as a result of using energy harvesting devices - whereby a
microcontroller is powered by ambient energy from the envi-
ronment (e.g. radiowaves). Although difficult to program [9],
intermittent computing devices are well-suited for a number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
TAPAS ’20, November 17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8189-5/20/11. . . $15.00
https://doi.org/10.1145/3427764.3428323

of applications where batteries does not fit the design con-
straints, such as space computer systems [1] and long-term
environmental sensors [11].

Programs written in a continuous power model are unable
to run without modification under intermittent power. This
is because code keeps important state in volatile memory
(RAM), which is irretrievably erased when a device loses
power. This means that when a power failure occurs, all
of the progress a program has made is erased, and then,
when power is restored, execution starts over from the be-
ginning again. One solution is to intersperse code with check-
points [7]. A checkpoint is a procedure that saves the entire
state of volatile memory to non-volatile memory, which per-
sists even after a power failure. When the device has enough
power again, the system retrieves the state saved in non-
volatile memory and continues execution from that state.

While a number of checkpointing strategies have been
proposed [3–5], none have support for programs with dy-
namic memory allocation. This is in part because reasoning
about dynamic memory allocation, especially on embedded
systems is a difficult problem [2]. However, memory man-
agement is important to consider as the cost of a checkpoint
is directly proportional to the amount of memory the check-
point must save. When dynamically allocated memory must
be checkpointed, the fluctuation of the heap means that the
cost of checkpointing will also vary greatly. This makes the
heap incompatible with existing checkpointing strategies
that assume a relatively stable checkpoint size.

In this extended abstract, we: 1) Describe the challenge of
checkpointing programs with dynamic memory allocation;
2) Demonstrate that optimal checkpoint placement can have
up to a 22% speedup in performance when compared to sub-
optimal placement; 3) Outline a first approach for optimally
placing checkpoints in such a way that is compatible with
existing approaches checkpoint placement, and can be used
in conjunction with prior work.

2 Motivating Example
To demonstrate the complexity of checkpointing in dynami-
cally allocated code, consider the code in Fig. 1. When insert-
ing a checkpoint, we will consider only line 5, line 10, and
line 13 for this example. Placing a checkpoint at line 5 is the
worst choice in the case, as we have just spent energy allo-
cating memory, but have not done any useful computation.

20

https://doi.org/10.1145/3427764.3428323
https://doi.org/10.1145/3427764.3428323

TAPAS ’20, November 17, 2020, Virtual, USA Nicholas Shoemaker, Ruzica Piskac, and Mark Santolucito

1 int x = 40;

2 int * y = malloc (4* sizeof(int));

3 int * z = malloc (4* sizeof(int));

4 // possible checkpoint (least optimal placement)

5 y[0] = 2;

6 z[0] = 2;

7 x = x + y[0];

8 free(y);

9 // possible checkpoint (suboptimal placement)

10 x = x + z[0];

11 free(z);

12 // possible checkpoint (optimal placement)

Figure 1. Code snippet of dynamic memory allocation with
potential checkpoint locations.

As a result, our checkpoint will need to copy variable 𝑥 , the
contents of the stacks, and the empty allocated memory of
𝑦 and 𝑧 to non-volatile memory to preserve the state of the
program. In contrast, line 13 is the best choice for this code
snippet, as we have completed the necessary computations
and free’d the memory. As a result, the only memory we
need to copy to non-volatile memory is the variable 𝑥 and
anything else on stack from the context.

In considering line 10 for a checkpoint, we see that it is a
suboptimal location. This is because line 12 will free memory
and thus decrease the cost of our checkpoint routine. Thus,
if the cost of the computation on line 11 is less than the cost
savings from freeing memory on line 12, we should skip the
line 10 checkpoint and instead checkpoint at line 13.

3 Impact of Checkpoint Placement
We hypothesized that placing checkpoints in areas of a pro-
gram that have less dynamic memory usage will increase
the overall speed of the code. In order to measure the sig-
nificance of this performance gain, we created a test setup
using real energy harvesting hardware.

To simulate power harvesting conditions, our experimen-
tal setup uses a TX91503 PowerSpot to send power over radio
waves, and a P2110EVB energy harvesting circuit to harvest
the power. A TI-MSP430FR2433 was run off the harvested en-
ergy, running code with checkpoints. We implemented a sim-
ple checkpointing procedure that saves the stack (cf. [3, 4]),
as well as the heap to non-volatile memory. We added check-
points to 3 programs with dynamically allocated arrays at
both optimal and least-optimal locations. We used the stan-
dard measurement for intermittent computing: we timed
how long it took for the programs to complete at different
distances (less energy is harvested at further distances).

We found that there is always at least some performance
gain, as shown in Fig. 2, from placing checkpoints at optimal
locations based on heap usage (immediately after frees) as
compared to the least optimal (immediately after mallocs).

35 40 45 50
0%

10%

20%

Power Harvester Distance (in.)

Pe
rc
en
ta
ge

sp
ee
du

p

Figure 2. Performance gain between optimal and least-
optimal checkpoint placement in a top-down merge sort
implementation (blue), bottom-up merge sort implementa-
tion (red), and an edge case (malloc arrays and immediately
free) program (brown).

Since dynamically allocated memory has a significant im-
pact on checkpoint performance, a checkpointing strategy
should take advantage of fluctuations in heap usage. We
notice that freeing memory is a net negative energy cost com-
putation with respect to any upcoming checkpoint. Thus,
to find optimal checkpoint placements, we must balance
the energy cost saved by freeing memory with the energy
expended by running computations prior to freeing memory.

Determining the optimal location of checkpoints statically
is understood to be a poor approach in general due to the
variability of power cycles. Instead, most approaches to inter-
mittent computing will place checkpoints at run-time, based
on an adaptive, run-time analysis of the power availability.
These dynamic checkpoint approaches are well-studied [5, 6],
and as such, we aim to find a checkpoint placement algo-
rithm that can compliment existing work. We believe that an
effective approach should run as a static analysis procedure.
This will allow the proposed solution to be combined with
existing dynamic checkpoint placement algorithms [5].

To this end, our proposed checkpointing strategy aims to
automatically mark sections of code as no-checkpoint zones.
The intuition is that because freeing memory can signifi-
cantly decrease the cost of a checkpoint, there are zones of
the program immediately preceding memory frees that are
always suboptimal checkpoint locations. Our compile-time
analysis can then be combined with existing run-time analy-
ses to guide the dynamic checkpointing strategies. Determin-
ing how far these no-checkpoint zones extend requires us to
reason about the size of the heap throughout the program.
To this end, combining formal models of intermittent com-
puting [10] with separation logic to reason about memory
usage [8] is promising direction.

Acknowledgments
The authors thank Kiwan Maeng for his help on the many
challenges of intermittent computing. This work was par-
tially funded by the National Science Foundation under
Grant No. CCF-1553168 and No. CCF-1715387.

21

Towards Checkpoint Placement for Dynamic Memory Allocation in Intermittent Computing TAPAS ’20, November 17, 2020, Virtual, USA

References
[1] Bradley Denby and Brandon Lucia. 2020. Orbital Edge Computing:

Nanosatellite Constellations as a New Class of Computer System.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
939–954.

[2] Jiangchao Liu, Liqian Chen, and Xavier Rival. 2018. Automatic Verifi-
cation of Embedded System Code Manipulating Dynamic Structures
Stored in Contiguous Regions. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37 (2018), 2311–2322.

[3] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer program-
ming and execution model for intermittent systems. ACM SIGPLAN
Notices 50, 6 (2015), 575–585.

[4] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: inter-
mittent execution without checkpoints. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 96.

[5] Kiwan Maeng and Brandon Lucia. 2018. Adaptive dynamic check-
pointing for safe efficient intermittent computing. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). 129–144.

[6] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin,
Kasim Sinan Yildirim, Brandon Lucia, and Przemysław Pawełczak. 2020.
Dynamic task-based intermittent execution for energy-harvesting
devices. ACM Transactions on Sensor Networks (TOSN) 16, 1 (2020),
1–24.

[7] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System support for long-running computation on RFID-scale devices.
In Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems. 159–170.

[8] John C Reynolds. 2002. Separation logic: A logic for shared mutable
data structures. In Proceedings 17th Annual IEEE Symposium on Logic
in Computer Science. IEEE, 55–74.

[9] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D Corner, and Emery D Berger. 2007. Eon: a language and
runtime system for perpetual systems. In Proceedings of the 5th inter-
national conference on Embedded networked sensor systems. 161–174.

[10] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2020.
Towards a Formal Foundation of Intermittent Computing.
arXiv:2007.15126 [cs.PL]

[11] K. S. Yildirim and P. Pawelczak. 2019. On Distributed Sensor Fusion
in Batteryless Intermittent Networks. In 2019 15th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS). 495–501.

22

https://arxiv.org/abs/2007.15126

	Abstract
	1 Introduction
	2 Motivating Example
	3 Impact of Checkpoint Placement
	References

