
Programming by example: efficient, but not1

“helpful”2

Mark Santolucito3

Yale University4

New Haven, CT, USA5

mark.santolucito@yale.edu6

https://orcid.org/0000-0002-1825-00977

Drew Goldman8

Roslyn High School9

Roslyn, NY, USA10

dgoldman19@roslynschools.org11

Allyson Weseley12

Roslyn High School13

Roslyn, NY, USA14

aweseley@roslynschools.org15

Ruzica Piskac16

Yale University17

New Haven, CT, USA18

ruzica.pikac@yale.edu19

Abstract20

Programming by example (PBE) is a powerful programming paradigm based on example driven21

synthesis. Users can provide examples, and a tool automatically constructs a program that22

satisfies the examples. To investigate the impact of PBE on real-world users, we built a study23

around StriSynth, a tool for shell scripting by example, and recruited 27 working IT professionals24

to participate. In our study we asked the users to complete three tasks with StriSynth, and the25

same three tasks with PowerShell, a traditional scripting language. We found that, although our26

participants completed the tasks more quickly with StriSynth, they reported that they believed27

PowerShell to be a more helpful tool.28

2012 ACM Subject Classification Human-centered computing → Empirical studies in interac-29

tion design30

Keywords and phrases User Study, Scripting, Programming by Example31

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.332

Funding This research sponsored by NSF grants CCF-1302327 and CCF-1715387.33

1 Introduction34

Scripting languages, such as PowerShell and bash, help IT professionals to more efficiently35

complete tedious and repetitive tasks. Those tasks can include file manipulations and36

organizing data, where a simple error can destroy users’ data. As an example, consider the37

disastrous attempt to remove all backup emacs files with the command rm * ∼. Additionally,38

small errors in scripts can lead to malicious behavior, such as data loss [25]. Scripts can39

be difficult for users to write by hand, requiring users to have extensive experience with40

regular expressions, programming, and domain expertise in the scripting language of their41

© Mark Santolucito and Drew Goldman and Allyson Weseley and Ruzica Piskac;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 3; pp. 3:1–3:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mark.santolucito@yale.edu
https://orcid.org/0000-0002-1825-0097
mailto:dgoldman19@roslynschools.org
mailto:aweseley@roslynschools.org
mailto:ruzica.pikac@yale.edu
http://dx.doi.org/10.4230/OASIcs.PLATEAU.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 PBE: efficient, but not “helpful”

choice. Depending on the application, a user may need to be able to write a very complicated42

regular expression for a relatively simple task. Furthermore, users may not have access to43

their scripting language of choice, depending on the operating system and software policies44

used by their employer.45

For these reasons, many end-users search for help on online forums when they need to46

write a script [3, 2, 4]. When users seek help in writing a script on forums, they will often47

provide a few illustrative examples that convey the goal of the script. This observation was the48

basis of StriSynth [12], a research tool that was proposed to make scripting easier and more49

efficient by allowing users to program scripts by example. While scripting is a challenging50

task, especially for novice programmers, providing examples of the intended behavior is a51

more natural interface for scripting. StriSynth supports various types of functions, such as52

transformations, filters, partitions, and merging strings.53

In this work, we explore how scripting by example, specifically with StriSynth, is received54

by the real-world target end-users. We designed a user study around StriSynth and recruited55

27 IT professionals to participate in the study. In our study we asked users to complete56

three tasks with StriSynth, and the same three tasks with PowerShell, a traditional scripting57

language. When using StriSynth, users were statistically significantly faster at completing58

tasks as compared with PowerShell. However, in a post-study survey when users were asked59

which tool they perceived to be more “helpful”, users statistically significantly reported that60

PowerShell, with the traditional scripting paradigm, was more helpful. This was counter-61

intuitive result, as we expected that a faster tool should be considered to be more helpful by62

users. While the formal methods community has largely taken efficiency of task completion63

to be an indicator of a good language design, we explore our results here that show this is in64

fact a more complex issue.65

2 Background66

Programming by example (PBE) [6, 23, 27, 7] is a form of program synthesis. It works by67

automatically generating programs that coincide with the given examples. In this way, the68

examples can be seen as an incomplete, but easily readable and understandable specification.69

However, even if the synthesized program satisfies all the provided examples, it might not70

correspond to user’s intentions due to this incompleteness in the specification. In this case, a71

user must provide further examples to the synthesis tool.72

To address this issue, StriSynth was implemented as a live programming environment [5]73

for PBE. In this way, a synthesized script can be refined with every new provided example,74

and thus yields a more interactive experience for the user. Interactive PBE allows end-users75

to provide a single example at a time, rather than guessing at the full example set that is76

necessary for synthesis.77

In order to compare the PBE paradigm to more traditional scripting languages, we78

have chosen to use the tool StriSynth [12]. StriSynth is an existing tool for automating file79

manipulation tasks, in a similar style to Flash Fill’s [1] synthesis of spreadsheet manipulations.80

While the use of scripting language such as sed, awk, Bash or PowerShell requires a certain81

level of expertise, many tasks can be easily described using natural language or through82

examples.83

2.1 StriSynth example84

To give some context for how StriSynth compares to traditional scripting language paradigms,85

we give an example task that can be easily completed with StriSynth. This task comes from86

M.Santolucito et al. 3:3

a StackOverflow post, where the users discuss challenging regular expressions [3]. The user87

asked for a script that will create a link from every item in a directory. To better illustrate88

the goal of the script, the user provided two examples transformations:

Document1.docx
Document2.docx 	 Document1

Document2

89

To accomplish this transformation, other users on the forum suggested a solution based90

on regular expressions in sed:91

sed/\(^[a-zA-Z0-9]+\)\.\([a-z]+\)/\<a href\=\’\1\.\2\’ \>\1\<\/a\>/g92

While it was very easy for the user to express the goal of the script by providing examples,93

the resulting script is arguably less readable, even for such a simple problem. In contrast, to94

solve this problem in StriSynth, a user provides an example showing what a script should do:95

> NEW96

> "f.docx" ==> "a"97

> val F = TRANSFORM98

The keyword NEW denotes the start for learning of a new script, after which the user99

provides an example of the scripts desired behavior. Based on the provided example, StriSynth100

learns a string transformer, and the user saves it with the next command. Every learned101

function can be saved using the command val name = ... which creates a reference, name,102

to the learned script. The user may then check how F works on different examples to confirm103

the learned function is correct.104

> F("Document1.docx")105

Document1106

> F("Document2.docx")107

Document2108

We observe that the learned transformer F is a function that exactly does what the user109

asked initially. However, it only takes a single string as input, while the user wanted a script110

that operates on a list of strings. To extend the learned transformer to work over a list, the111

user can use the as map function.112

> val finalScript = F as map113

If a function G has a type signature G : T1 → T2, then applying the postfix operator as114

map will result in G as map : List(T1)→ List(T2). With as map, the user creates the final115

script which takes as input a list of file names and creates a list of HTML links.116

Beyond the string transformation used above, StriSynth can also learn other types of117

functions from examples. StriSynth supports a filter function that takes a list of strings as118

input and removes some elements based on the filtering criterion. Similarly, StriSynth also119

supports learning a partition function takes as input a list of strings, and divides them into120

groups based on the partitioning criterion. Those groups are then returned as a list of lists121

of strings. This functions can be used in any way by the user, but are particularly useful122

for scripting tasks that require operations on certain types of files, or files matching some123

naming pattern.124

PLATEAU 2018

3:4 PBE: efficient, but not “helpful”

In addition, StriSynth can learn a reduce function that merges the elements in a list into125

a single string. StriSynth’s split function does the opposite: it returns a list of strings from126

the input string. These types of functions are especially useful for scripting tasks that apply127

operations to collections of files.128

3 Methodology129

A recent survey of the key challenges facing formal methods cites the need for more user130

studies, especially on real-world users [15]. To test the impact PBE on real users, we131

recruited 27 IT professionals, all of whom were 18 years of age or older. All materials132

for the study, as well as the raw data results from the study are available open source at133

https://github.com/santolucito/StriSynthStudy.134

Our study design consisted of four stages:135

1. A tutorial on both PowerShell and StriSynth that introduced the paradigm and syntax136

2. Complete three scripting tasks (Extract filenames from a directory listing, Move files137

with *.png to imgs/, Printing pdfs from a list of various file types) in PowerShell138

3. Complete the same three scripting tasks in StriSynth139

4. A post-study survey140

In the study, participants were told that they would be using the tools StriSynthA141

and StriSynthB instead of StriSynth and PowerShell to avoid bias from participants’ prior142

experience. The participants were randomly split into two groups, group A and group B,143

where the two groups switched the order of steps 2 and 3 of the study to account for any144

potential bias in earlier exposure to the tasks. Group A completed the tasks with PowerShell145

first (N=12) and group B completed the tasks with StriSynth first (N=15). The entire study146

generally took each participant 50 minutes, and the study was conducted in-person with a147

researcher present. The scripting tasks were completed on the researcher’s laptop, which was148

preloaded before each study with directories and files needed for the scripting tasks.149

While each user was participating in the study, the researcher present recorded the overall150

time that was used to complete each task. Following the completion of the six tasks, each151

user was given a questionnaire. The questionnaire measured various responses: prior coding152

experience, perceived helpfulness of each program as a whole, and perceived helpfulness of153

each program for each specific task they completed.154

4 Results155

In this section we present the results of the user study described in Sec. 3. Overall, users156

completed the tasks more quickly when using StriSynth as opposed to PowerShell. This is157

good evidence that StriSynth is an efficient tool, especially as none of our users had used158

StriSynth before this study, while some already had experience with PowerShell. However,159

despite this concrete measure of efficiency for StriSynth, users said that they believe that160

PowerShell is a more helpful tool.161

4.1 Time to complete the user study tasks162

To estimate the usefulness of the programming by example tool StriSynth, we recorded the163

time it took for users to complete each task with both StriSynth and PowerShell. The results164

are shown in Fig. 1. In addition, Fig. 1 also contains standard error, depicted with line bars.165

https://github.com/santolucito/StriSynthStudy

M.Santolucito et al. 3:5

Extract
Filenames

Move
Files

Printing
pdfs

Average over
all tasks

0

50

100

150

200
Se
co
nd

s
to

co
m
pl
et
e

PowerShell
StriSynth

Figure 1 The amount of the time each task took, as well as the average time over all tasks for
all users (N=27). The smaller bars indicate standard error.

In the case of the first task (extracting filenames), from in Fig. 1 the standard error bars166

give us the intuition that true mean of the time it takes for overall population to complete167

this task using PowerShell is between 170 and 210 seconds. The smaller the standard error,168

the more likely is that we have achieved the exact, true value of the mean time, which it169

takes for the entire population of IT professionals to complete the tasks.170

We can see in Fig. 1 that overall the users took less time to complete the tasks with171

StriSynth. However, our sample size was relatively small (N=27). Therefore, we wanted172

to measure the confidence that our observations are reflective of the larger IT population173

beyond our small sample size. To do this we ran a paired sample t-test [32].174

When running the paired sample t-test, we are checking the null hypothesis that the175

difference between the paired observations in the two samples is zero. Without going into176

the details of statistical methods, we need to compute the p-value. Any p-value of less than177

.05 is called statistically significant, indicating we have met a generally accepted threshold of178

confidence in our results [32].179

By running these tests on our samples, we learn that a statistically significant difference180

was found in the Move Files (p = .03) and Printing pdfs (p = .02) tasks. The p-value of .03181

means that, assuming StriSynth does not actually have any impact on time to complete the182

Move Files task, there is only a 3% chance that we could have observed the timing difference183

(or even some larger difference) between StriSynth and PowerShell presented Fig. 1. In other184

words, given these low p-values, we can be confident that using StriSynth does in fact have185

an impact on time to complete the task.186

All together, our results support the claim that, for small scripting tasks of the type we187

presented to our users, PBE can be a more efficient programming paradigm. This is the188

expected result that is in line with the literature [16].189

PLATEAU 2018

3:6 PBE: efficient, but not “helpful”

Extract
Filenames

Move
Files

Printing
pdfs

Overall
rating

1

2

3

4

5

6

7

H
el
pf
un

es
s
ra
tin

g

PowerShell
StriSynth

Figure 2 Users’ (N=27) self reported measure of the helpfulness of each tool with standard error
bars.

4.2 Reported helpfulness190

Reaching beyond traditional measures for PBE, at the end of the study we also asked users191

to report how “helpful” they found both StriSynth and PowerShell. At this point, users did192

not know how long they took to complete the tasks with each of the tools. Users were asked193

the rate the helpfulness only based on their experience of using the tools during the study.194

The exact questions asked were “The following program was helpful for scripting/completing195

Extract Filenames/etc...”, and users were asked to respond on a scale from 1 (strongly196

disagree) - 7 (strongly agree). We show the results from this survey question in Fig. 2, again197

with standard error bars. Users rated PowerShell as more helpful in all three tasks, with the198

Move Files task showing the most significant difference (p < .01).199

The results in Fig. 2 show the surprising insight that, despite the efficiency of StriSynth as200

demonstrated in Fig. 1, users perceived PowerShell to be the more helpful tool. Unfortunately,201

as we did not anticipate such unexpected results, our study design did not include a more202

detailed definition of helpfulness, or ask users to give a more detailed description of their203

interpretation of what it means for a tool to be helpful. However, we can at least surmise from204

the results presented here, that efficiency is not a complete proxy measure for helpfulness of205

a tool.206

4.3 Impact of prior user experience207

Prior work observed that familiarity can be a stronger indicator of user preference than208

efficiency in the development of programming languages [31]. Our study asked users to self-209

report their prior experience with scripting languages in a post-study survey to understand210

the impact of user familiarity. The survey used a seven-point Likert scale for users assess the211

users’ prior experience. Fig. 3 shows the distribution of experience in three categories for all212

users.213

To understand the impact of prior experience on how the users interacted with StriSynth,214

M.Santolucito et al. 3:7

1 2 3 4 5 6 7
0

5

10

PowerShell
Experience

#
of

Pa
rt
ic
pa

nt
s

1 2 3 4 5 6 7
0

5

10

Bash
Experience

#
of

Pa
rt
ic
pa

nt
s

1 2 3 4 5 6 7
0

5

10

Other scripting
Experience

#
of

Pa
rt
ic
pa

nt
s

Figure 3 Users’ (N=27) self reported prior experience with various scripting languages from 1
(Unfamiliar) to 7 (Expert User).

we split our user population into two categories. We have the inexperienced user group,215

which is the users who rated their prior experience with PowerShell as a 1 (unfamiliar), and216

the complement set of users as the experienced user group, who rated their prior experience217

with PowerShell as (≥ 2). In Fig. 4, we show how these two groups performed in the study.218

Fig. 4 shows that both groups of users completed the tasks faster with StriSynth. A more219

subtle and interesting insight is that inexperienced users had a greater relative speedup in220

task completion when using StriSynth. That is, inexperienced users benefited more from221

using StriSynth as compared to the benefit to experienced users. This provides evidence222

for the widely stated perception that programming by example is a domain well-suited for223

novice programmers.224

Experienced Inexperienced
0

50

100

150

200

250

Se
co
nd

s
to

co
m
pl
et
e

Experienced Inexperienced
1

2

3

4

5

6

7

H
el
pf
un

es
s
ra
tin

g

PowerShell
StriSynth

Figure 4 We grouped users as Experienced (PowerShell experience≥2, N=17) and Inexperienced
(PowerShell experience=1, N=10). We report average time to complete the tasks, and self reported
helpfulness of the tools, as separated by these two groups.

PLATEAU 2018

3:8 PBE: efficient, but not “helpful”

4.4 Threats to Validity225

In a usability study, it is important to avoid any possible selection bias in the call for226

participants. Selection bias can be an issue if the set of users selected systematically differs227

from the target population. The results we have presented are from a set of users that work228

as professional IT support specialists. We do not believe that we have any selection bias here229

because in this work, we specifically wanted to explore the impact synthesis can have in the230

real-world on such professionals.231

A further potential threat to the validity of our results is in the social desirability bias, or232

need-to-please phenomena, whereby users will subconsciously try to produce the results they233

expect the researcher would like to see. This potential bias can occur when users are asked234

to compare a tool that is a known standard with an alternative that the user knows to be235

developed by the researcher. To combat this issue, we presented StriSynth and PowerShell236

as tools named StriSynthA and StriSynthB respectively. In this way, we framed the study as237

a comparison between two different tools that we had developed, eliminating the potential238

need-to-please bias. This was a critical component to our study design that allowed us to239

observe the disconnect between efficiency and users’ perceived helpfulness of each tool.240

5 Discussion241

A key question from these results remains - how are efficiency and helpfulness different in the242

eyes of the users, and why is this difference manifest in our study? One tempting explanation243

is that this is the result of two vastly different interfaces. PowerShell is an industrially244

developed tool, while StriSynth is a research prototype. However, both are command line245

utilities with a qualitatively similar user experience. Another possible point of departure is246

in the ability of the user to understand the function of a synthesized script from StriSynth.247

Trust in the result of program synthesis is a direction that needs further exploration, but248

StriSynth is unique in this respect in that it provides an English text explanation of the249

synthesis result. Another possible interpretation may be tied to the expressivity of the250

paradigm - StriSynth and other PBE tools are generally limited in their ability to directly251

work with a traditional programming language and use familiar concepts such as variables252

and loops. This may make a language seem less helpful for new users.253

Finally, the results from our user study are specifically targeted at the impact of pro-254

gramming by example systems for scripting in IT professional populations. We must also255

consider how our results can be interpreted and extended to other PBE domains and program256

synthesis more generally.257

5.1 Application to Related Work258

Gulwani et al. [11] show that PBE is an effective paradigm for industrial application in259

spreadsheet manipulation, such as string transformations [1, 9], table transformations [10]260

and database look-ups [29]. Another approach is based on the abstraction of ’topes’ [28],261

which lets users create abstractions for different data present in a spreadsheet. With topes, a262

programmer uses a GUI to define constraints on the data, and to generate a context-free263

grammar that is used to validate and reformat the data. These application domains of PBE264

are focused on a similar population of non-expert programmers, and so it may be possible to265

observe a similar efficiency vs helpfulness phenomena.266

Unlike programming by example, in which the user provides input-output examples,267

programming by demonstration is characterized by the user providing a complete trace268

M.Santolucito et al. 3:9

demonstration leading from the initial to the final state. There are several programming269

by demonstration systems [6], such as Simultaneous Editing [26] for string manipulation,270

SMARTedit [22] for text manipulation and Wrangler [17] for table transformations. As271

programming by demonstration requires intermediate configurations instead of just input and272

output examples, this paradigm is usually less flexible [21] than programming by example,273

but the synthesis problem is easier. Based on our results here, it is possible that this274

reduced flexibility may indicate users would rate programming by demonstration even less275

helpful (but possible more efficient) than PBE in certain domains. There has been work to276

overcome the limited expressivity of programming by demonstration by combining program277

synthesis with direct manipulation of output [24]. This approach may present a way to278

resolve the disconnect between efficiency and helpfulness as it allows users to interact in both279

a traditional programming style as well as with synthesis.280

The Myth [27] and Λ2 [7] systems support PBE for inductively defined data-types in281

functional languages. In contrast to StriSynth which focuses on scripting tasks, these tools282

are focused on synthesis for more general purpose programming languages. The results from283

our study may be cautiously extrapolated other domains - while the theme of PBE is the284

same, interaction preference for users may differ when looking at general purpose languages.285

Instead of providing specification in terms of examples or demonstrations, specification can286

also be given in more formal and complete ways. InSynth [14, 13], CodeHint [8] and the C#287

code snippets on demand [33] are systems that aim to provide code snippets based on context288

such as the inferred type or the surrounding comments. Leon [20] and Comfusy [19, 18]289

synthesize code snippets based on complete specifications, which are written in the same290

language that is used for programming. Sketch [30] takes as input an incomplete program291

with holes, and synthesizes code to complete the so that it meets the specification. These292

techniques provide a more nuanced interface that may seem, from a perspective of helpfulness,293

to be more similar to a traditional language paradigm.294

6 Conclusions295

Our study shows that users do not always correlate an efficient programming paradigm with296

a helpful paradigm. A more thorough exploration of this finding requires a follow up study, in297

particular to discover the definition of helpfulness that participants are using. A key question298

to answer would be whether users had erroneously perceived PowerShell to be more efficient299

and therefore helpful, or if users consciously have other metrics in mind that constitute the300

helpfulness of programming paradigm.301

References302

1 Flash Fill (Microsoft Excel 2013 feature). http://research.microsoft.com/users/303

sumitg/flashfill.html.304

2 Stack Overflow: Auto increment a variable in regex. http://goo.gl/GPuZP3. Accessed:305

2015-03-25.306

3 Stack Overflow: What is the most difficult/challenging regular expression you have ever307

written? http://goo.gl/LLJe0r. Accessed: 2015-03-24.308

4 Super User: How to batch combine jpeg’s from folders into pdf’s? http://goo.gl/LnGYH7.309

Accessed: 2015-05-13.310

5 Sebastian Burckhardt, Manuel Fähndrich, Peli de Halleux, Sean McDirmid, Michal Moskal,311

Nikolai Tillmann, and Jun Kato. It’s alive! Continuous feedback in UI programming. In312

PLDI, 2013.313

PLATEAU 2018

http://research.microsoft.com/users/sumitg/flashfill.html
http://research.microsoft.com/users/sumitg/flashfill.html
http://research.microsoft.com/users/sumitg/flashfill.html
http://goo.gl/GPuZP3
http://goo.gl/LLJe0r
http://goo.gl/LnGYH7

3:10 PBE: efficient, but not “helpful”

6 A. Cypher and D.C. Halbert. Watch what I Do: Programming by Demonstration. MIT314

Press, 1993.315

7 John Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations316

from input-output examples. In PLDI, 2015.317

8 Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik Sen. Code-318

Hint: dynamic and interactive synthesis of code snippets. In ICSE, 2014.319

9 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.320

In POPL, 2011.321

10 Sumit Gulwani. Synthesis from examples: Interaction models and algorithms. In SYNASC,322

2012.323

11 Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation324

using examples. Commun. ACM, 55(8), 2012.325

12 Sumit Gulwani, Mikael Mayer, Filip Niksic, and Ruzica Piskac. Strisynth: Synthesis for326

live programming. In ICSE, 2015.327

13 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using328

types and weights. In PLDI, 2013.329

14 Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthesis of code snippets.330

In CAV, 2011.331

15 Reiner Hähnle and Marieke Huisman. 24 challenges in deductive software verification. In332

Giles Reger and Dmitriy Traytel, editors, ARCADE 2017. 1st International Workshop333

on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements,334

volume 51 of EPiC Series in Computing. EasyChair, 2017.335

16 Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. Foofah: Trans-336

forming data by example. In Proceedings of the 2017 ACM International Conference on337

Management of Data, SIGMOD ’17. ACM, 2017.338

17 Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. Wrangler: inter-339

active visual specification of data transformation scripts. In CHI, 2011.340

18 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Comfusy: A tool for341

complete functional synthesis. In CAV, 2010.342

19 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete functional343

synthesis. In PLDI, 2010.344

20 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Software synthesis345

procedures. Commun. ACM, 55(2), 2012.346

21 Tessa Lau. Why programming-by-demonstration systems fail: Lessons learned for usable347

AI. AI Magazine, 30(4), 2009.348

22 Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Learning programs from traces using349

version space algebra. In K-CAP, 2003.350

23 H. Lieberman. Your Wish Is My Command: Programming by Example. Morgan Kaufmann,351

2001.352

24 Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. Bidirectional evaluation with direct ma-353

nipulation. PACMPL, 2(OOPSLA), 2018.354

25 Karl Mazurak and Steve Zdancewic. Abash: Finding bugs in bash scripts. In In ACM355

SIGPLAN Workshop on Programming Languages and Analysis for Security, 2007.356

26 Robert C. Miller and Brad A. Myers. Interactive simultaneous editing of multiple text357

regions. In USENIX, 2001.358

27 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.359

In PLDI, 2015.360

28 Christopher Scaffidi, Brad A. Myers, and Mary Shaw. Topes: reusable abstractions for361

validating data. In ICSE, 2008.362

M.Santolucito et al. 3:11

29 Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from exam-363

ples. PVLDB, 5(8), 2012.364

30 Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, UC Berkeley, 2008.365

31 Joshua Sunshine. Protocol Programmability. PhD thesis, Pittsburgh, PA, USA, 2013.366

32 Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability and367

statistics for engineers and scientists, volume 5. Macmillan New York, 1993.368

33 Yi Wei, Youssef Hamadi, Sumit Gulwani, and Mukund Raghothaman. C# code snippets369

on-demand, 2014. http://codesnippet.research.microsoft.com.370

PLATEAU 2018

http://codesnippet.research.microsoft.com

	Introduction
	Background
	StriSynth example

	Methodology
	Results
	Time to complete the user study tasks
	Reported helpfulness
	Impact of prior user experience
	Threats to Validity

	Discussion
	Application to Related Work

	Conclusions

