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Abstract
Live Coding is a creative coding practice, where the act of
programming itself constitutes a performance. The code writ-
ten during a Live Coding performance often generates media,
for example a continuous stream of music or video. One of
the challenges of Live Coding is in finding a balance in the
language design, such that the language is both expressive
enough for the artist, as well as simple enough to be pro-
grammed in real-time. In order to reduce the overhead of
manually coding every part of a Live Coding performance,
we propose a tool for Live Coding that leverages program
synthesis to simplify the process. Program synthesis retains
the “show your code” ethos of Live Coding performances,
while also lowering the barrier to entry to the performance
practice.

CCSConcepts: • Software and its engineering; •Applied
computing→ Sound and music computing;
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1 Introduction
The promise of fully automated software construction is
intuitively alluring. As such, program synthesis has seen an
explosion of academic progress in recent years. The term
“program synthesis” refers to automatically generating code
to satisfy some specification. Like functional programming,
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a specification describes what the code should do, without
going into details about how it should be done.
The specification for program synthesis can take many

forms. As one example, in the paradigm of programming by
example [7] (PBE), a user provides a set of pairs of input-
output examples that illustrate the desired behavior of the
code. From these examples, a PBE engine generates code
that generalizes from the examples to create a program that
handles the unspecified examples as well.
The starting point for our project is the insight that Live

Coding, from the world of computer music, is a setting that
revolves around specification refinement and hence is well-
suited for human-in-the-loop synthesis. Live Coding is a
performative practice of coding still in its nascent stages
of definition [28]. Generally, a Live Coding performance
consists of code that continually generates somemedia (often
audio [19, 21] or video [17]). The performer changes the code
throughout the performance, thereby shaping the media that
is being produced. Live Coding falls roughly into the category
of Live Programming [29, 30] - as the code changes, the
output (the audio) is updated in real time. A key component
to Live Coding is allowing viewers to watch the evolution of
the code itself.
Live Coding is, by its nature, an iterative process where

specifications are continuously refined. During the evolution
of code throughout a Live Coding performance, there is no
single correct state of the code (i.e. specification) that the per-
former must achieve. The process of writing code for a Live
Coding performance is exploratory. As a result, the implicit
specification of the intended code is constantly shifting. Due
to this constantly shifting specification, program synthesis
and live coding make an attractive pair.

By augmenting Live Coding environments with synthesis,
we gain a more fluid interface to the creative ideas a Live
Coding artist may want to express. On the other hand, pro-
gram synthesis-enabled Live Coding environments gives us
a testbed for exploring the design space of program synthe-
sis interfaces. This may yield insight into how a synthesis-
driven feedback loop for software development might be
most effectively designed.
In this work, we present an initial prototype tool for a

program synthesis-enabled Live Coding environment. We
implement our tool using Javascript and WebAudio on the
frontend, allowing the tool to run in the browser and achieve
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a high level of accessibility. The backend synthesis engine is
implemented using Syntax Guided Synthesis, or SyGuS [1],
with CVC4 [22]. SyGuS allows us to synthesis small func-
tional programs, which we then embed into Javascript tem-
plates in the Live Coding environment. The key contribu-
tions of this work are:

• Outline a synthesis algorithm specialized to a step-
sequencer Live Coding environment.

• Present an implementation of our synthesis-enabled
live coding environment that integrates program syn-
thesis, program repair, and live programming. This
tool is open source and available to test online1

• Discuss the future challenges making challenges in a
program synthesis-enabled Live Coding environment.

2 Background and Related Work
Our goal with a program synthesis-enabled Live Coding en-
vironment is to gain a better understanding of both Live
Coding and program synthesis. In particular for program
synthesis, one major issue is that there has been slow adop-
tion in real world settings. One important aspect to adoption
of program synthesis is in capturing the natural interac-
tions a programmer has with code. Prior work found that
even if users are able to complete a task more efficiently
with program synthesis, they still find the process of coding
to be more helpful than the fully automated synthesis ap-
proach [23]. To address this, the need for program synthesis
that maintains the interactive aspect of coding as a process
(sometimes called human-in-the-loop synthesis), stands as a
key hurdle in increasing the impact of program synthesis on
developers.

There was an early understanding that program synthesis
suffered from usability issues in its design, particularly with
the black box approach [18]. The importance of human-in-
the-loop processes from a usability perspective has also been
well established in the field of computer music. There is am-
ple evidence that fully automated tools are not a complete
solution for constructing digital artifacts, especially in cre-
ative domains [31]. Live Coding arose partially as an answer
to fully automated tools for generative music [4], providing a
way for users to interact and shape generative processes for
music in real-time by changing the code of these processes.

Recognizing that, just as creating music, programming is
an inherently creative activity, we chose to explore Live Cod-
ing as our context for human-in-the-loop program synthesis.
In fact, the intersection of iterative refinement of code and
program synthesis has been explored through Live Program-
ming, a close relative of Live Coding.

1Code and a live demo are available at https://github.com/Barnard-PL-
Labs/SequencerLiveCoding.

2.1 Live Coding and Live Programming
Live Programming [29] allows users to edit the code of their
program and immediately see the effect of those changes on
the output. The key motivation is to tighten the edit-compile-
run cycle of traditional program development, thereby clos-
ing the gap between users making a change in code and
seeing the impact of that change. In the context of program
synthesis, this has been called the user-synthesizer gap [9].
Live Coding [4] is distinct from Live Programming, but

closely related in many ways. In both cases, there is a focus
on live re-evaluation of code. Live programming is largely
framed as a style of IDE and a software development envi-
ronment, whereas Live Coding specifically focuses on the
performative practice of the evolution of code. In this sense,
Live Coding is a particular way of utilizing a Live Program-
ming environment.
There has been great progress at the intersection of Live

Programming and program synthesis [10, 16, 32]. The need
for an interactive synthesis process was identified early [12].
Recently, the Sketch-n-Sketch tool that looks at output di-
rected programming [16]. In this line of work, the authors
explore how direct manipulation of the intended output can
be turned back into program transformations automatically.
The authors mention the possible extension of program syn-
thesis (as opposed to hand-coded transformations) as a future
direction. Similar work [26] has looked at Live Programming
and simple program transformations to repair code. In our
prior work, we have built a preliminary demo to explore
general purpose program synthesis in a Live Programming
environment [24]. There has been further work on establish-
ing a formal foundation for Live Programming and program
synthesis [10]. Furthermore, the interface issues with inter-
active program synthesis are also an area of active develop-
ment [32]. In this work, we focus on how Live Coding can act
as a platform to explore how general purpose synthesis tools
might be integrated into Live Programming environments.

2.2 Program Synthesis
The Syntax Guided Synthesis (SyGuS) format language [1]
was introduced in an effort to standardize the specifica-
tion format of program synthesis, including PBE synthesis
problems. The SyGuS language specifies synthesis problems
through two components - a set of constraints (e.g. input-
output examples), and a grammar (a set of functions). The
goal of a SyGuS synthesis problem is to construct a program
from functions within the given grammar that satisfies the
given constraints. With this standardized synthesis format
and an ever expanding set of benchmarks, there is now a
yearly competition of synthesis tools [2], which pushes the
frontier of scalable synthesis further. Although CVC4’s sup-
port for SyGuS is typically the best of the SyGuS competition,
even with this state-of-the-art tool, many synthesis problems
still take on the order of seconds to complete [2]. The need
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for fast synthesis times is concretely motivated by Live Cod-
ing, as the performance (and code editing) is happening in
real-time. Some work has explored program synthesis in the
context of music [25], but has not yet tackled Live Coding
specifically.

In summary, prior work has provided an initial exploration
of how program synthesis works in an interactive environ-
ment. The prior work on synthesis and Live Programming
naturally leads us to explore Live Coding as an application
domain of human-in-the-loop synthesis.

3 System Overview
Our synthesis-enabled Live Coding environment specifically
focuses on Live Coding a step-sequencer, a hardware device
used by professional musicians to create looping musical
patterns (or, sequences of musical steps). A step-sequencer
provides a simple interface to the performer - a set of buttons
that control when/which notes should be played. Rather than
work with a physical device, we used a software model of
a basic step-sequencer [6]. In a programmatic sense, a step-
sequencer is a two-dimensional array, where each subarray
is an instrument, and each element of the subarrays (the
state of each button) are musical beats.

Following a classic live programming interface model, we
have two panes for user interaction - a code editor and a
direct manipulation editor (the top and bottom of Fig. 1 re-
spectively). The Code Editor is a Live Programming interface
that allows the user to manually change the code. Whenever
an update to the code is detected, the code is rerun to gen-
erate a new state of the output, and the output displayed in
the direct manipulation editor is also updated. The direct
manipulation editor allows the user to directly change the
state of the output of the code, which is in effect a change to
the specification of the code. Any change in the direct ma-
nipulation editor triggers program synthesis, and the Code
Editor is updated to reflect the new, synthesized code that
matches the changes in the Code Editor.
One of our key design goals is that the code on the code

editor and the state of the output in the direct manipulation
editor are always in alignment. To be more specific about the
concept of keeping code and output state in alignment, we
define two properties that we should maintain on our system.
First, at every point in time, the output in the direct manipu-
lation editor should reflect the output of the code. Second,
the output is only updated by user interactions, either to the
output itself or to the code.

4 Human-in-the-Loop Synthesis
Our proposed Live Coding environment uses a synthesis
driven program-repair model to constantly update the code
to match the provided pattern. On the interface level, this
is a programming-by-demonstration interaction - the user

demonstrates the intended beat with the GUI (direct manipu-
lation editor), and the repair engine generates code to match
the data in the GUI. Our approach is to transform this Live
Coding, beat manipulation problem into a programming-
by-example (PBE) problem. As programming-by-example
problem, we use CVC4 [22], an SMT solver with support
for SyGuS, to run SyGuS queries. We map the grammatical
elements of SyGuS to generic JavaScript code, and put this
result inside Javascript templates before displaying the code
to the user.

4.1 Stage 1: Initial Synthesis
More specifically, to obtain a PBE problem, we start by treat-
ing each pattern/instrument (e.g. Tom, Kick, Snare, etc) as
a separate problem. Each beat itself is an array of length
16 with values representing the note to be played (0 for no
beat, 1 for a quiet beat, 2 for a loud beat) at the time step
corresponding to the index of the array. As is typical in step
sequencers, time is quantized into 16 steps. To transform this
array into a PBE problem, we view the array as a function
mapping time to notes.
As an example, the pattern shown in Fig. 2 would gener-

ate the PBE constraints as shown in Fig. 3. Notice that we
truncate the constraints at the position of the last non-zero
beat. We do this so that synthesis has some opportunity to
generalize the given pattern. Transforming from SyGuS lan-
guage output to JavaScript, the language of our Live Coding
environment, we then obtain the following term: 1 - (i %
2). To apply this term over the array of beats, we leverage
Javascript’s support for higher order functions (in this case,
a map specifically), using a code snippet template as shown
in Fig. 5.

This is a desirable solution as it not only satisfies the given
examples, but it also reasonably generalizes across the rest
of the beat. The solution hypothesizes that the pattern the
user would like to complete is [1,0,1,0,1...] for the full
16 beats. However, this is of course not the pattern the user
has provided yet. If we return exactly the code as shown in
Fig. 5, the code and the direct manipulation editor pattern are
no longer in alignment. One of the key design goals of this
system is that the code is always in a state that generates the
state displayed in the direct manipulation editor. However,
the synthesized code violates this as it is forcing a change
on the state of the system that was not directly induced by
the user. To remedy this situation, we overwrite the second
half of the array which is all zeros, using code shown in
Fig. 6. This allows us to keep our general solution, while still
ensuring the code does not overstep in its predictions.

4.2 Stage 2: Live Programming
In the second stage of our human-in-the-loop model of syn-
thesis, the user may iterate on the synthesized code. For ex-
ample, if the user likes the synthesized code shown in Fig. 6,
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Code Editor

Direct Manipulation Editor (step-sequencer)

Manual Coding (Sec. 4.2)
1. Initial Synthesis (Sec. 4.1)
2. Program Repair (Sec. 4.3)

Figure 1. An overview of a prototype of the interface and workflow of a human-in-the-loop synthesis tool for live coding a
step-sequencer.

Figure 2. A pattern entered into the step-sequencer. As an array: [1,0,1,0,1,0,0...].

1 (constraint (== f(0) 1))

2 (constraint (== f(1) 0))

3 (constraint (== f(2) 1))

4 (constraint (== f(3) 0))

5 (constraint (== f(4) 1))

Figure 3. Constraints for the pattern shown in Fig. 2

1 (define -fun f ((i Int)) Int (- 1 (mod i 2)))

Figure 4. The possible synthesis solution to the SyGuS input-
output example constraints shown in Fig. 3

1 b.rhythm1 = new Array (16).fill (0).map((val ,i) =>

2 { return 1 - (i % 2); });}

Figure 5. The final JavaScript code resulting from synthesis

1 b.rhythm1 = new Array (16).fill (0).map((val ,i) =>

2 { return 1 - (i % 2); });

3 b.rhythm1.splice (5,11,... Array (11).fill (0));

Figure 6. Synthesized code in a template

the user may comment out the second line so that the pat-
tern in the direct manipulation editor adopts the generalized

code solution. This is a key component to human-in-the-loop
synthesis - that synthesis is not forced to over-generalize.
Rather than imposing the generalization of the synthesized
program on the state the user is directly manipulating, we
synthesize code that contains the generalization, but has
not activated it. The user can inspect the code, and make
edits as appropriate. We are synthesizing a program with the
expectation that it is not the final program the user needs.
We expect that the user will iterate on this code.

4.3 Stage 3: Program Repair
In the last stage of the program synthesis cycle, the user may
change the specification through the direct manipulation
editor interface. This implicitly indicates that we need to
run synthesize with the updated specification. At this stage,
we have two possible scenarios. First, we have the scenario
where the code has been unchanged by the user since the
last synthesis request. In the second situation, the code has
been modified by the user, and we must find a way to merge
the user provided code and the synthesized code.

In the first case, merging the new code with the old code is
relatively straightforward. As long as we have restricted the
target DSL to be small enough, we can directly replace the
key components. In the case of the .map templates we have
presented, we need only to replace the anonymous function
in the map, and bounds on the .splice operation. However,
when we are using less restrictive templates, we may need a
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more sophisticated approach. We believe that this approach
will be specific to the DSL and templates.

The situation is more complex when the user has made
arbitrary edits to the provided code. In this case, the tem-
plate may not be directly present in the code anymore. The
naive solution is to simply overwrite the user’s code with
the synthesized result. Any strategy will require an interface
that clearly communicates to the user how the code is being
repaired. It is possible that the user would prefer to have
some ability to select which repair strategy should be used
at any given time.

4.4 Handling Interaction
In contrast to the traditional approach to synthesis, where
a specification is provided and code is returned, we must
now consider a larger spectrum on interactions. First, we
consider how to handle a failed synthesis attempt. Whereas
a traditional synthesis engine can simply tell the user the
tool was not able to synthesize a solution, this does not work
in our setting. Recall that our system design requires that
the code always reflects the status of the step-sequencer (or
generally, the direct manipulation editor). If a change has
been made in the content editor, we must find some valid
change to reflect this in the code. When the synthesis engine
is not able to find a solution within the prescribed timeout,
we can fall back on code transformations. If the user has
clicked one step in the step-sequencer (e.g. turned on step
7) and we cannot find a new program with synthesis, we
can keep the old synthesis result and add a direct indexing
operation to adjust the code according (e.g. b.rhythm1[7]=1).
Additionally, in human-in-the-loop synthesis, we have

no control over when the user will update a specification
or update code. Thus, we must have a strategy to address
the resulting race conditions. As one example, consider the
situations where a synthesis request is still running, and the
direct manipulation editor is updated by the user. The change
to the direct manipulation editor represents a change in the
specification, and a new synthesis request will be generated.
If the previous synthesis request has still not completed, we
now have two synthesis requests for different specifications
running at the same time. To resolve this race condition,
we tag each synthesis request with the state of the direct
manipulation editor when it begins. If we receive a synthesis
result with a tag that does not match the current state of
the direct manipulation editor, we ignore it and wait for the
new synthesis query to finish. Formalizing these strategies
to cover the full set of issues that arise in this setting is still
an open question.

The speed of synthesis is also a major concern - especially
in a Live Coding environment where reactivity is important
to the performance. If we were to run each pattern as a
separate synthesis query, the total synthesis time, using a
500ms timeout over six beat patterns, would be 3 seconds
when run serially. It may be possible to overcome this to

some extent by running each synthesis request in parallel,
but there is a clear need for faster synthesis tools on a lower
level.

An additional open question is how we can integrate syn-
thesis tools for more general code generation (i.e. beyond the
templates demonstrated in Fig. 6). Currently, our proposed
approach to synthesis is limited to Linear Integer Arithmetic
(LIA) problems and only replaces subexpressions in .map
statements. However, the scope of SyGuS problems that
CVC4 can solve is much larger than this, and can handle
much more complex synthesis (e.g. bitvectors, strings, UIF,
datatypes). We leave to future work the exploration of strate-
gies to more fully integrate the power of SyGuS to JavaScript
specific synthesis.

5 Discussion
Automated code synthesis is an area of research with a long
history (cf. the Church synthesis problem [5]). However,
due to the problem’s undecidability and high computational
complexity for decidable fragments, for almost 50 years the
research in program synthesis was mainly focused on ad-
dressing theoretical questions and the size of synthesized
programs was relatively small. However, the state of affairs
has drastically changed in the last decade. By leveraging
advances in automated reasoning and formal methods, there
has been a renewed interest in software synthesis. Research
in program synthesis has recently focused on developing
efficient algorithms and tools, and has found use in the in-
dustrial software application, FlashFill [13, 14].
However, beyond FlashFill, which embeds PBE program

synthesis into spreadsheets, the adoption of program synthe-
sis into developer workflows in production has been limited.
We believe that this limited adoption is in part due to the
fact that existing techniques are designed to be black-boxes
for users. Synthesis techniques are designed in such a way
that the user provides a specification (such as input-output
examples in PBE) and the tool returns complete program
code [1]. However, the generated code may not match the
user’s intention. The generated codewill notmatch the user’s
intention when the specification is not specific enough and
the program synthesis engine incorrectly generalized from
the user’s specification. This issue is fundamentally unavoid-
able in program synthesis - for example in PBE, input-output
examples are always an underspecification (in that the input-
output examples only partially describe the behavior of the
intended program).
When using program synthesis to synthesize code, the

user has two options to fix synthesized code that does not
match the user’s intentions. First, the user may update the
specification and re-run program synthesis to generate a
new program from scratch. Second, the user may manually
edit the code. When manually editing code, the environment
should automatically update the specification to match the
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code. In a PBE synthesis environment, this takes the form of
updating the input-output examples by rerunning the new
code. The automatic update of the specification is called Live
Programming [24, 30]. However, once the code has been
edited manually, the program synthesis approach can no
longer be directly used as it would generate new code and
not take into account the user code edits. The inability to
switch back and forth between synthesis and code editing is
a problem because the refinement of specification and code
are complementary activities. That is, the process of editing
code is a critical step that helps users refine the specification
of their desired system. To allow program synthesis to take
user code edits into account, we turn to the area of “program
repair” [27]. Somework has begun to explore the intersection
of live programming and synthesis [11]. Program repair takes
existing code, and automatically modifies (similarly to how
program synthesis automatically generates) it to fit a new
specification.

In order to make program synthesis a viable software de-
velopment method, we must gain a better understanding of
how program synthesis, Live Coding, and program repair
can be integrated together into a single program synthesis
toolchain. By combining these three modes of programming
together, we can begin to explore human-in-the-loop pro-
gram synthesis. One short-term benefit of human-in-the-
loop program synthesis is to broaden the scope of coding
tasks that program synthesis techniques can handle. Program
synthesis techniques are currently limited to synthesizing
snippets of code [2, 3], although recent applications have
extended to more media-rich domains, such as generation of
visualizations [8, 15, 20]. By taking an iterative approach to
synthesis [33], program synthesis engines should be able to
more effectively build upon previous synthesis results, rather
than synthesizing code from scratch each time. The longer
term goal of human-in-the-loop synthesis is to achieve a
better integration of program synthesis tools with the devel-
opment process than has currently been explored.

6 Conclusion
The largest challenge we currently face in exploring human-
in-the-loop program synthesis is a lack of a suitable applica-
tion domain for prototyping. The ideal setting is one where
we can ask users to interact with a human-in-the-loop pro-
gram synthesis algorithm and have them naturally explore
the interaction between the program synthesis engine and
the user. Live Coding exactly matches this setting and as
such is a motivating application domain to explore not just
for artistic purposes, but also for scientific inquiry. We have
presented a prototype tool that demonstrates one way of
how Live Coding and program synthesis can be combined.
Our key next steps are to further explore the design space of
program synthesis-enable Live Coding through user studies
and artistic practice.
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