Programming-by-Example for Audio:
Synthesizing Digital Signal Processing Programs®

Mark Santolucito
Computer Science
Yale University
New Haven, CT, USA
mark.santolucito@yale.edu

Aedan Lombardo
Computer Science
Yale University
New Haven, CT, USA
aedan.lombardo@yale.edu

Abstract

Programming by example allows users to create programs
without coding, by simply specifying input and output pairs.
We introduce the problem of digital signal processing pro-
gramming by example (DSP-PBE), where users specify input
and output wave files, and a tool automatically synthesizes
a program that transforms the input to the output. This pro-
gram can then be applied to new wave files, giving users
a new way to interact with music and program code. We
formally define the problem of DSP-PBE, and provide a first
implementation of a solution that can handle synthesis over
commutative filters.

CCS Concepts -« Applied computing — Sound and mu-
sic computing;

ACM Reference Format:

Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica Piskac.
2018. Programming-by-Example for Audio: Synthesizing Digital
Signal Processing Programs. In Proceedings of the 6th ACM SIGPLAN

“This research sponsored by NSF grants CCF-1302327 and CCF-1715387.

Many thanks to Thomas Murphy for his guidance in thinking through this
problem and many solution attempts. Thanks to the anonymous reviewers
whose comments helped raise the bar on this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM 18, September 29, 2018, St. Louis, MO, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-5856-9/18/09...$15.00
https://doi.org/10.1145/3242903.3242906

Kate Rogers
Computer Science
Yale University
New Haven, CT, USA
kate.rogers@yale.edu

Ruzica Piskac
Computer Science
Yale University
New Haven, CT, USA
ruzica.piskac@yale.edu

International Workshop on Functional Art, Music, Modeling, and De-
sign (FARM ’18), September 29, 2018, St. Louis, MO, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3242903.3242906

1 Introduction

The great proliferation of computer music programming lan-
guages points to the difficulty of building a natural interface
for users that want to computationally interact with musical
data. Programming applications in the domain of computer
music, and specifically digital signal processing (DSP), re-
quires that users not only grasp fundamental programming
techniques, but also have a large domain specific knowledge
of time and signal manipulations. The amount of prerequi-
site skill and effort to overcome these barriers is often higher
than many users are able to commit.

Furthermore, the difficulty of programming DSP appli-
cations is often not commensurate with the scope of the
creative intentions. A simple creative choice may require a
disproportionate technical effort. As a motivating example,
imagine a user hears a sample in a piece of music, and again
hears the same sample later in the piece with some added
effects. In order to reuse this effect in the user’s own musical
composition, the user must now reconstruct the filter that
was used to transform an audio clip. In this case the user has
the original audio file, and the transformed audio file, but
does not know exactly how this transformation happened.
In the standard approach, a user would need to be a do-
main expert and listen to the two files, and aurally estimate
which kinds of filters were used to achieve the transforma-
tion. Once the user has some suspicion as to the appropriate
filter types that will be needed, the user must write a pro-
gram in some language (SuperCollider [McCartney 2002],
CSound [Boulanger et al. 2000], PureData [Puckette et al.
1997], etc) to implement the DSP filter the user has in mind.
Further still, the user will then need to spend time tweaking
the filter parameters to find the best fit.

https://doi.org/10.1145/3242903.3242906
https://doi.org/10.1145/3242903.3242906

FARM ’18, September 29, 2018, St. Louis, MO, USA

S S —

(a) Input example (b) Output example (c) Generated
Figure 1. The waveforms (a) and (b) are provided as exam-
ples, and DSP-PBE synthesizes a filter that produces (c).

To simplify this process, we introduce DSP programming
by example (DSP-PBE). With DSP-PBE, the user simply pro-
vides our tool with the original audio (input), and the trans-
formed audio (output), and the tool will automatically con-
struct a DSP filter that approximates the transformation.

We formally define the problem of DSP programming by
example as follows: Given an input waveform I and an output
waveform O, construct a DSP filter F, to minimize the aural
distance dist between O and F (I). In a single line,

Find ¥, such that dist(O, F (I)) =0

In the sequel we describe our approach to the two key
components of this statement; the definition of distance,
and a search technique to find 7. A distance metric that is
faithful to the psycho-acoustics of the human ear is critical
for a useful DSP-PBE tool. As an example, taking a trivial
distance function that returns the difference in length of the
two audio samples will allow a delay filter to satisfy any
example pair of samples. Additionally, an efficient search
algorithm is critical, as the space of possible DSP filters is
very large. Not only do we need to consider a wide variety of
filters, we need to consider the space of parameters for each
filter, as well as the different ways of combining multiple
filters.

2 Motivating Example

As a motivating example, imagine a user was to reconstruct
the filter that was used to transform an audio clip, as shown
in Figure 1. In this example, a user provided a clip of a
cartoon-spring.wav in Figure 1a, and the same sound as
it had been transformed with a low-pass filter at 800 Hz,
Ip£(800), as shown in Figure 1b. However the nature of the
transformation is unknown to the user and they wish to
discover the filter needed. Our DSP-PBE tool is able to syn-
thesize a filter Ip f(1989), that when applied to the original
sound, produces the waveform shown in Figure 1c. While
the solution is not exact, the difference is not significantly
noticeable to an untrained ear.

3 Background

To give context for DSP-PBE, we first explain the traditional
concept of programming by example [Cypher and Halbert

Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica Piskac

1993; Gulwani 2012; Lieberman 2001]. Programming by ex-
ample (PBE) is a synthesis technique that automatically gen-
erates programs that coincide with given examples. An exam-
ple is specified as a tuple of input and output values. Given a
set S = {(i1,01), ..., (in, 0n)} of input/output examples, the
goal is to automatically derive a program P such that for
every j, P(ij) = o;.

PBE is in line with one of the often repeated high level
goals of functional programming — to describe what a pro-
gram should do, and not how the program should do it. In-
stead of writing code, the user provides a list of relevant
examples and the synthesis tool automatically generates a
program. In this way, the examples can be seen as an easily
readable and understandable specification. However, even
if the synthesized program satisfies all the provided exam-
ples, it still might not correspond to the user’s intentions.
Examples are, by nature, an incomplete specification.

PBE is a promising research direction that enables easy
manipulation of data even for non-programmers [Gulwani
et al. 2012]. Recent work in this area has focused on manipu-
lating fundamental data types such as strings [Menon et al.
2013; Singh and Gulwani 2012] and lists [Feser et al. 2015;
Osera and Zdancewic 2015]. The success and impact of this
line of work can be estimated from the fact that PBE ships as
part of the popular Flash Fill feature in Excel 2013 [FlashFill
2013].

The core difference between traditional PBE and DSP-PBE
is in the application domain of Digital Signal Processing. Dig-
ital Signal Processing (DSP) programming languages provide
users with an interface to build signal processing programs in
domain specific languages. Some of these languages provide
their own implementations of signal processing primatives,
such as SuperCollider [McCartney 2002], CSound [Boulanger
et al. 2000], and PureData [Puckette et al. 1997]. Other DSP
languages provide alternative front-ends to these languages,
such as Vivid [Murphy 2018], which provides Haskell bind-
ings to Supercollider.

Although many DSP languages are full featured enough to
write general purpose programs, in this work we focus on the
construction of DSP filters. A DSP filter is, broadly speaking,
any program that transforms a digital signal from one form
to another. An example of a DSP filter is a low-pass filter,
which takes an input signal and generates an output signal
that keeps frequencies below some frequency threshold, but
removes frequencies above that threshold.

The most closely related work in audio signal processing
is a technique called resynthesis [Masri and Bateman 1996].
Resynthesis is the process of decomposing a sound into its
spectrogram, and then building a synthesizer to recreate a
similar sound. The limitation here is that resynthesis builds
a generative synthesizer, which does not take into account
any information about the components used to create the
original sound. This limitation means that resynthesis cannot
be applied in a new context, whereas DSP-PBE allows us to

Programming-by-Example for Audio

construct a DSP program that can be used with various new
input samples to create novel sounds. For example, DSP-PBE
could be given a sample of a trumpet and a trombone, and
the generated DSP program could be applied to a violin to
hear what a violin sounds like if it was a trumpet that had
been turned into a trombone. In this case we can discover
the analogy trumpet:trombone :: violin:?.

From a machine learning perspective, the above exam-
ple use case is closely related to work on learning analo-
gies [Mikolov et al. 2013], where the goal is to discover rela-
tions such as man:king :: woman:queen. To do this, words are
embedded in a vector space, so that the transformation from
man to king, can be directly applied to woman. There are
two keys differences between this approach and DSP-PBE.
The first is that DSP-PBE should produce a human readable
transformation. We would like to generate DSP programs
that can be used verbatim, but also inspected and modified
by the user. While program code provides this readability,
vector transformations are not comprehensible in the same
way. Second, word embeddings require that the semantics of
an object can be embedded into a vector space. As we will
see in Sec 4, a semantic representation of an audio file (what
a human perceives) is not immediately recoverable from its
direct representation.

4 Aural Distance

As a distance metric, we used as a starting point the literature
on acoustic fingerprinting [Casey et al. 2008]. Acoustic fin-
gerprinting is the concept of creating a condensed, distinct
summary of an audio file that can be used later to identify
that audio file or to look it up in a database. Acoustic finger-
prints turn an audio file into a represent of how the file will
sound to the human ear regardless of how it is represented
in a digital format [Casey et al. 2008]. There are numerous
ways to develop acoustic fingerprints and companies like
Shazam and Sound-Hound have developed complex algo-
rithms to create accurate fingerprints even from low quality
files recorded on a cellphone mic. For this work, we used
the work of Shazam [Wang 2003] as an inspiration for our
distance metric calculation.

As an intuition, the psycho-acoustic identity of a sound
file (how humans distinguish between one sound and the
next) can be captured by taking every “moment” of audio,
and listing the predominate frequencies for that slice of time.
This intuition can be represented with a waterfall plot, as
shown in Figure 2, which plots how the frequencies change
over time. A waterfall plot uses the Fast Fourier Transform
(FFT) to calculate many discrete Fourier transforms over
small times slices. In this way, a waterfall plot is a represen-
tation of an audio file as a list of spectrograms plotted over
time. In the Shazam method, the peaks are selected from
each time slice of audio and used to create a “constellation”
of peaks over time. This constellation is then used to build a

FARM ’18, September 29, 2018, St. Louis, MO, USA

hash that acts as a fingerprint to uniquely identify the audio
sample. We use a similar strategy by first performing a real
Fast Fourier Transform on the audio file and then picking out
the frequency peaks in each time frame. However, the key
difference in DSP-PBE is that we do not use the constellation
as a hash for lookup in a database (as Shazam and Sound-
Hound do), but instead, we need a distance metric between
two constellations to provide a measure of how close we are
to synthesizing the correct DSP filter. Distance metrics are
common in music synthesis tasks, for example, in the gener-
ation of jazz improvisations, where the improvisation should
stay close by some measure to the original melody [Donzé
et al. 2014].

Fast Fourier Transforms (FFT) are the key to a good acous-
tic fingerprint. The FFT, however, cannot be taken as a black-
box in our application. The two factors we need to consider
are 1) the window-size for how many samples will be used to
calculate the FFT, and 2) the bin size which roughly speaking,
defines the resolution of the FFT.

Each return element is a frequency bin, and depending on
the scale of your return array the size of these bins varies. In
order for each bin to correspond to 1 Hz the size of the return
vector must be equal to the sampling frequency (44,100 Hz).
If each bin is not 1 Hz, the effects of spectral leakage will be
seen. This occurs when the bins do not correspond to the
exact frequency peaks of the sound. The amplitude from the
peaks that fall in between bins will leak over into the closest
bin and create a distorted spectrogram. For this reason we
had to adjust the size of the FFT return arrays to be 44,100,
as 44,100 Hz is a common format for audio. Although this
slows down the process of FFT, it provides the most accurate
representation of the sound and for our purposes frequency
accuracy is paramount.

With our constellations created from the waterfall plot, we
constructed a dist function that measures the aural distance
and is faithful to the psycho-acoustics of the human ear. Our
implementation takes the Euclidean distance of the peaks
in a time slice on the frequency-amplitude axis. In order to
define this distance more formally, we introduce the notation
c@t to indicate selecting time slice ¢ from constellation c. We
also use the function peak :: Int — Constellation — Peak
to select a peak from a constellation, where the peaks are in
sorted order based on frequency. Then, for an audio clip x and
an audio clip y, and a function toC :: Audio — Constellation
to transform the audio clip into a constellation with s time
slices and p peaks in each time slice:

ts

2

t=0 i=0

M~

euclid(peak(i, toC(x)@t),

peak(i, toC(y)@t))

Note that this definition requires the audio clips to be tem-
porally aligned, which is not always a fair assumption in

FARM ’18, September 29, 2018, St. Louis, MO, USA

Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica Piskac

e Vete el

80

75

70

65

60
15 20 30 40 50 60 70 80 100 200

400 500 600

800 1.0k 2.0k 3.0k 4.0k 5.0k 8.0k8.00kHz

Figure 2. A waterfall plot of the cartoon-spring.wav from 0-200 ms between frequencies of 20-8000 Hz, where the height
indicates the amplitude of each frequency. This plot was created with the REW tool [REW 2018].

the real world. We leave the exploration of a temporal offset
between two example audio samples to future work.

As a sanity check that this distance metric matches the
psycho-acoustic definition of distance, we used the test cases
listed in Table 1.

The goal in the synthesis procedure is to find a DSP fil-
ter program, F, such that dist(O, F(I)) = 0. However, in
practice the DSP-PBE Synthesizer can only get us so close to
this metric and we instead just minimize this distance. To do
this, the user specifies a default threshold distance for the
aural distance. The threshold distance defines how close is
acceptably close, and can be changed by the user depending
on their needs or requirements.

5 Search

As the search space of possible DSP program is extremely
large, our search procedures must be exceptionally efficient.
As a first foray into DSP-PBE, we restrict ourselves to only
synthesizing low-pass and high-pass filters, and global vol-
ume adjustment. These two filters have the key property that
they are quasi-commutative — when the thresholds of these
filters do not overlap, applying a low-pass and then a high-
pass is the same as applying a high-pass and then a low-pass.
Although our approach has no theoretical basis for being
applicable to non-commutative filters (for example, delay
lines or ring filters), we do attempt to use our approach on
such filters in Sec 8. We leave a more thorough exploration
of non-commutative filters to future work.

5.1 Gradient Descent

Gradient descent is a technique commonly used in modelling
and machine learning. Given a cost function, which repre-
sents the disagreement between a proposed model and the
actual data, gradient descent can be used efficiently to min-
imize the cost and generate the model of best fit. Gradient
descent is only guaranteed to terminate with the globally
minimal cost if the cost function being optimized is convex -
this is because gradient descent will “descend” along the sur-
face of the cost function, in each step following the steepest
gradient. While we were not able to design our aural distance
function from Section 4 to be convex, our cost function does
demonstrate some properties of convexity that allow gradi-
ent descent to produce useful results, even if the result is not
guaranteed to be the global minimum. We will describe here
some properties of our distance metric that were helpful in
minimizing the cost of the synthesized filter, as well as the
shortcomings of our design, and how we try to overcome
them by adjusting our implementation of gradient descent.

In order to visualize the rough shape of our distance metric,
we plot the distance between pairs of examples, and various
possible DSP filters in Figure 3. Here we only visualize the
distance curves in the dimension of the low-pass filter. Notice
that the curves exhibit a clear “saddle”, which represents the
minimum cost. In the ideal case, gradient descent will find
these points. Note that we do not have these graphs available
during synthesis — producing the entire graph as in Figure 3
is prohibitively expensive.

In Figure 3, the last curve we plot is the distance between
cartoon-spring.wav and cartoon-spring-hpf1500.wav,

Programming-by-Example for Audio

FARM ’18, September 29, 2018, St. Louis, MO, USA

Table 1. Test cases to evaluate distance metric. The exact values are only important in relationship to the others.

] Test Name & Expected Result \ Value 1 \ Value 2 \
Identity . .
Value 1 = 0 (PianoC, PianoC) = 0 NA
Commutativity . . _ . . _
Value 1 = Value 2 (PianoC, PianoCSharp) = 5.635 | (PianoCSharp, PianoC) = 5.635
Commutativity (PianoC, HornCSharp) = 20.500 | (HornCSharp, PianoC) = 20.500

Value 1 = Value 2

Filter less than pitch
Value 1 < Value 2

(PianoC, PianoFilterC) = 3.749

(PianoC, PianoCSharp) = 5.635

Filter less than pitch+instrument
Value 1 < Value 2

(PianoC, PianoFilterC) = 3.749

(PianoC, HornCSharp) = 20.500

Pitch less than pitch+instrument
Value 1 < Value 2

(PianoC, PianoCSharp) = 5.635

(PianoC, HornCSharp) = 20.500

20

ed

15

Aural Distance
=
\

— e

7 =lp fézooo;

F =Ip (8003 —
¥ = hpf (1500 ‘

¥ = Ipf (5000
4000 5000 6000

\
0 1000 2000 3000
low-pass filter threshold (Hz)

Figure 3. The distance curves showing the convex-like
shape of the aural distance function. Each curve is the dis-
tance between an input file, and a filter applied to that file -
dist(I, ¥ (I)).

the same file with a high pass filter applied with a thresh-
old of 1500 Hz. Notice that as the threshold of the low-pass
filter applied to the input example (cartoon-spring.wav
increases, the distance to the output example decreases. This
is because as a low-pass filter’s threshold increases, it al-
lows more and more frequencies to pass into the output -
thereby having less of an effect. Whereas in the case of the
cartoon-spring-hpf1500.wav, the true filter is a high-pass

o
w
I

Aural Distance
(o))
I

il
o
I

4.5 |

-
| | | |

F = Ipf(800)

4
1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
low-pass filter threshold (Hz)

Figure 4. Zooming in (1000 to 1500 Hz) on a portion of a
curve from Figure 3, we see the aural distance function is
not perfectly convex on the micro scale.

filter, so the less we apply a low-pass filter, the closer we get
to the correct filter.

Although Fig. 3 depicts on one dimension of the search
space (low-pass filter threshold), the actual space we need to
search has many more dimensions. In our implementation,
we only explore a space of two DSP filters and volume adjust-
ment, but this already results in 5 dimensional space (each
filter requires both a threshold value and an amplitude value
for how much of the filter to apply). In general, this space

FARM ’18, September 29, 2018, St. Louis, MO, USA

20

19.9 —

19.8 |- —

19.7

19.6

19.5

19.4

Aural Distance

19.3

19.2

19.1

| F= \lpf(SO(\)) | | |
19
8000 10000 12000 14000 16000 18000 20000

low-pass filter threshold (Hz)

Figure 5. Looking at the portion of a curve from Figure 3
between 8k Hz and 20k Hz, we see the aural distance function
is not perfectly convex on the macro scale. In this case, that
is because the sample has very few frequencies above the 8k
Hz range.

becomes even larger for DSP-PBE as more DSP primitives
(ring filter, white noise, delay etc) are added. To speed up
gradient descent, we use stochastic gradient descent, so that
in each step, we only move in d < 5 number of dimensions.

5.2 Dealing with Non-convexity

There are a number challenges with working with gradient
descent in the aural DSP domain because our distance metric
is not convex. On the micro scale, the distance function is
susceptible to noise and not entirely smooth, as shown in
Figure 4. In order to handle the micro scale variations, we
use a periodic restart of the gradient descent. This means
that every n rounds, as defined by the user, the gradient
descent will backtrack to the best solution it has found so
far. Intuitively, the choice of n represents how far gradient
descent is allowed to explore a path of optimization before it
is forced to give-up on that direction if it has not found any
benefit to this direction. The best value for n then must be
determined based on the trade-off of potential time wasted
on poor choices, and the potential benefit of these choices. In
our implementation we use n = 4 after a holistic evaluation
of the convexity of the aural distance function. The stochastic
gradient descent will then continue, selecting dimensions to
explore in each round using a new random seed.

Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica Piskac

On the macro scale, we face the challenge that the dis-
tance function is again not convex — there are many local
minima and long plateaus, as shown in Figure 5. In order to
overcome this, we must carefully pick the initial value for
gradient descent. If we pick a value in the middle of a plateau,
the gradient descent algorithm will not find any significant
gradient, and conclude we have reached the convergence
condition. In our current implementation, we iterate at large
intervals (1000 Hz) of possible threshold values for both low
and high pass filters. We choose possible DSP programs that
use only low pass, only high pass, and both low and high
pass filters. After evaluating these, we take the lowest cost
initial DSP program, and start gradient descent from that
point.

Finally, one of the key parts of a good application of gra-
dient descent is the choice of the parameters such as the
learning rate and the convergence goal. These parameters
must be adjusted based on the values observed from the cost
(in our case, distance) function. While the details of tuning
gradient descent are outside the scope of this paper, it suf-
fices to note that any change in the distance metric will likely
also require a readjustment of these parameters.

6 Evaluation

We implemented a DSP-PBE tool based on the approach de-
scribed in Section 4 and Section 5. Our tool is available open-
source at www.github.com/santolucito/DSP-PBE!. Our tool
is mostly written in Haskell and uses the Vivid library [Mur-
phy 2018] for bindings to SuperCollider [McCartney 2002].
Haskell allows easy access to type information and metapro-
gram construction tools that are useful for program synthesis,
however the programs themselves are easily translated back
to SuperCollider “synth defs”, which are DSP filter programs.
We use the scipy python module for calling the FFT since the
library is quite mature and provides a simplified interface
specifically for calling FFT on audio.

One key implementation point is that we use a separate
representation of a DSP for running gradient descent, and
for actually processing the audio. Gradient descent works
best when all parameters are in the same scale, so we map
the frequencies [0,20k] Hz to a [-1,1] scale. Likewise, we map
the application levels for each filter (how much of the filtered
output should be included in the final mix) on a [-1,1] scale.

In Table 2, we show the results of running our tool on a
set of benchmarks of input/output example audio samples.
The audio samples were transformed in Audacity, using the
Low Pass Filter and High Pass Filter effects. Since we use
SuperCollider’s filter implementations on the backend, there
may be very slight variation, but this is to be expected in
real-world application as well. All experiments were run on

IThe exact version of the code used for this evaluation is avail-
able at commit https://github.com/santolucito/DSP-PBE/tree/
d022954164b830395bddb21cdc94046ed6882083.

www.github.com/santolucito/DSP-PBE
https://github.com/santolucito/DSP-PBE/tree/d022954164b830395bddb21cdc94046ed6882083
https://github.com/santolucito/DSP-PBE/tree/d022954164b830395bddb21cdc94046ed6882083

Programming-by-Example for Audio

FARM ’18, September 29, 2018, St. Louis, MO, USA

Table 2. Time to converged on a solution DSP program for various benchmarks. The programs may not match the known
DSP program, but may still be psycho-acoustically equivalent depending on the expertise of the listener.

’ Description ‘ True DSP ‘ Synth’ed DSP ‘ Time (sec) ‘
Cartoon Spring Ip£(800) Ip£(1989) 56.195
Cartoon Spring Ip£(5000) Ip£(4000) > hpf(7000) 54.004
Cartoon Spring hpf(1500) Ip£(1000) = hpf(1000) 53.964

BTS DNA (Kpop) Ipf(2000) Ipf(1996) 56.874
Holst Mars hp £ (3500) Ipf(10000) > hpf(1000) 55.444

an Intel Core i7-6820HQ CPU @ 2.70GHz with 16 GB of
RAM and an Intel Sunrise Point-H HD Audio sound card.

We can also breakdown the runtime cost of synthesis into
the two different stages - 1) initial program selection, and
2) gradient descent. The initial program selection phase is a
mostly fixed cost, as we always evaluate the same distribu-
tion of initial value. On average this process takes roughly
40 seconds. We outline future directions of research that may
be able to reduce this cost in Section 7.

7 Refinement Type Driven Synthesis

In order to find an initial value for gradient descent, we could
use refinement types [Freeman and Pfenning 1991]. In this
section we explore a possible optimization for selecting an
initial DSP program for gradient descent. This has not yet
been implemented, but we present the theory behind the
approach.

7.1 Refinement Types for DSP

Refinement types are a way of giving an abstract description
of the behavior of a function. For example, using a similar
syntax to the refinement type system for Haskell, Liquid-
Haskell [Vazou et al. 2014], given the function map :: [a]
— [b] we can further provide a refinement types that cap-
tures some properties of the behavior of this function over
values:

f :: xs:[a]l — ys:[b] | length xs == length ys

In this case, the refinement type describes that the length of
the lists are still equal after applying the map function.

In a similar style for DSP, we can write predicates about
the filters available to us during synthesis. For example, a
low-pass filter could be described as the refinement type
that says the amplitude of the frequencies greater than the
threshold frequency have decreased in the output Audio. For
brevity in notation, we will only treat a single time slice from
the waterfall plot here, but the concept generalizes when
quantified over all time slices as well.

1pf :: t:Float — xs:Audio — ys:Audio |
Vfi1 € spectrogram(xs). Vf, € spectrogram(ys).
(i>tAfa>tAfi==f) = amp(f1) > amp(f2)

Where t represents the level at which the lowpass filter
is applied, spectrogram represents the spectrogram of the
sound sample, f; represents a frequency, and amp() repre-
sents the amplitude of the frequency.

Additionally, a high-pass filter could be described as the re-
finement type that says the amplitude of the frequencies less
than the threshold frequency have decreased in the output
Audio.

hpf :: t:Float —» xs:Audio — ys:Audio |
(Vf1 € spectrogram(xs).Vf, € spectrogram(ys)).
(i<tAfo<tAfi==f;) = amp(fi) > amp(f2)

Notice that in these refinement types, we only need to
calculate the spectrogram for the input and output statically.
As opposed to the current technique of generating filters,
applying them, and the calculating the aural distance, this
approach is relatively static. We could quickly check many
threshold values over the input and output examples. This
will only yield a rough boolean estimation of whether this
threshold should even be considered, but this is enough
information for us to select an initial program to pass to our
gradient descent algorithm. As the search for an initial filter
takes roughly 40 seconds out of our current benchmarks,
this could dramatical increase the speed of synthesis.

7.2 Combination of Search Algorithms

Beyond just using the refinement types to select an initial
program for gradient descent, we can use refinement types
in as part of the main search strategy as well. We briefly
describe here a way to use refinement types in combination
with gradient descent to handle more complex combinations
of DSP filters. So far in our work (c.f. Sec. 6) we have syn-
thesized filters with a fixed form - all our solutions use a
single low-pass filter, and a single high-pass filter. Ideally, we
would be able to synthesize solutions that use any arbitrary
combination of filters. In order to do this, we would need an
iterative solution that can find one filter at a time.

In this approach, given input example x: Audio and output
example y:Audio, we would first find a filter ¥ using the
approach described in Sec. 5 and Sec. 7.1. We will say that
this # has the refinement type r;. However, this filter might
not return a satisfactory result. We could then continue the
search using the output of ¥ (x) as the new input example,

FARM ’18, September 29, 2018, St. Louis, MO, USA

z:Audio. Now the synthesis task is to find a filter #” (with
refinement type ;) using input example z:Audio and out-
put example y: Audio. Essentially, ¥ has gotten us the first
half of the way, and ¥~ will get us the second half of the
way. With this, we can start to use more information rich
refinement types, such as below:

F:: x:Audio — y:Audio |
I z:Audio. ri(x,2) Ary(z,y)

8 Future Work and Conclusions

The main contribution of this paper is to pose the problem
of DSP-PBE. While we have presented a prototype imple-
mentation of a DSP-PBE tool, this primarily functions as
a proof-of-concept. There remains significant room for op-
timization in both the distance calculation and the search
algorithm. In future work, we also plan to expand beyond
commutative filters to be able to synthesize effects such as
delay lines.

We briefly revisit the motivating conceptual example from
Sec. 3 where we want to synthesize the filter that transforms
a trumpet into a trombone and apply that filter to a violin. In
order to achieve this we need more complex filters than high-
pass, low-pass, and amplitude adjustment. Despite a lack of
a formal approach for non-commutative filters, we added a
pitch shift filter and the ringz delay line filter from Super-
Collider into our tool using the current approach. Though
we had no reason to believe that our current approach should
produce useful results when allowing more complex filters
in the search space of synthesis, we found the results to be
at least interesting, and even reasonable. The synthesized
filter to transform a trumpet into a trombone was as follows:

SetVolume: 1.00%

LoPass: freq@1000 amp@0.91 >>>

HiPass: freq@100 amp@0.00 >>>
PitchShift: freq@-1600 amp@0.91 >>>
Ringz: freq@9100 delay@0.10 amp@0.23 >>>
WhiteNoise : amp@0.00

The trumpet and trombone input audio files, as well as
the audio of a violin with this filter applied is available as a
Soundcloud playlist [Santolucito 2018].

Although with the current tool, synthesis times presented
might be prohibitively slow for many use cases, especially on
such small programs, we should be encouraged by progress
in other domains of program synthesis. In the SyGusS pro-
gram synthesis competition, which has run for four years,
tools have seen an exponential speed up and increase in the
range of programs that can be synthesized. As one example,
in the 2014 competition the LinExpr_eq1.sl benchmark
was only solved by one tool, and took 1128 seconds [Alur
et al. 2014]. In the 2017 competition, the same benchmark
was solved by all tools, with the fastest taking only 199 sec-
onds [Alur et al. 2017].

Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica Piskac

References

2018. REQ: Room Eq Wizard. http://www.roomeqwizard.com. (2018). Ac-
cessed: 2018-07-08, Version 5.18.

R. Alur, R Bodik, E. Dallal, D Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P.
Madusudan, M. Martin, M. Raghothman, S. Saha, S. Seshia, R. Singh, A.
Solar-Lezama, E. Torlak, and E. Udupa. 2014. Syntax-Guided Synthesis.
Dependable Software Systems Engineering, NATO Science for Peace and
Security Series (2014). http://sygus.seas.upenn.edu/files/sygus_extended.
pdf

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2017.
SyGuS-Comp 2017: Results and Analysis. CoRR abs/1711.11438 (2017).
arXiv:1711.11438

Richard Charles Boulanger and others. 2000. The Csound book: perspectives
in software synthesis, sound design, signal processing, and programming.

Michael A Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe
Rhodes, and Malcolm Slaney. 2008. Content-based music information
retrieval: Current directions and future challenges. Proc. IEEE 96, 4
(2008).

A. Cypher and D.C. Halbert. 1993. Watch what I Do: Programming by
Demonstration. MIT Press.

Alexandre Donzé, Rafael Valle, Ilge Akkaya, Sophie Libkind, Sanjit A Seshia,
and David Wessel. 2014. Machine improvisation with formal specifica-
tions.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data
structure transformations from input-output examples. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015. 229-239.

FlashFill 2013. Flash Fill (Microsoft Excel 2013 feature). (2013). http:
//research.microsoft.com/users/sumitg/flashfill.html.

Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. Vol. 26.
ACM.

Sumit Gulwani. 2012. Synthesis from Examples: Interaction Models and
Algorithms. 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (2012). Invited talk paper.

Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet
data manipulation using examples. Commun. ACM 55, 8 (2012), 97-105.

H. Lieberman. 2001. Your Wish Is My Command: Programming by Example.
Morgan Kaufmann.

Paul Masri and Andrew Bateman. 1996. Improved modelling of attack
transients in music analysis-resynthesis. In ICMC.

James McCartney. 2002. Rethinking the computer music language: Super-
Collider. Computer Music Journal 26, 4 (2002), 61-68.

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lampson,
and Adam Kalai. 2013. A Machine Learning Framework for Programming
by Example. In ICML (1). 187-195.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
2013. Distributed representations of words and phrases and their com-
positionality. In Advances in neural information processing systems.

Tom E. Murphy. 2018. Vivid Synth. vivid-synth.org. (2018).

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015. 619-630.

Miller S Puckette and others. 1997. Pure Data. In ICMC.

Mark Santolucito. 2018. Trumpet is to Trombone as Vio-
lin is to ? https://soundcloud.com/mark-santolucito/sets/
trumpet-is-to-trombone-as-violin-is-to. (2018).

Rishabh Singh and Sumit Gulwani. 2012. Learning Semantic String Trans-
formations from Examples. PVLDB 5 (2012).

Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2014. Refinement types for Haskell. In ACM SIGPLAN
Notices, Vol. 49. ACM, 269-282.

Avery Wang. 2003. An Industrial Strength Audio Search Algorithm. (ISMIR).

http://www.roomeqwizard.com
http://sygus.seas.upenn.edu/files/sygus_extended.pdf
http://sygus.seas.upenn.edu/files/sygus_extended.pdf
http://arxiv.org/abs/1711.11438
http://research.microsoft.com/users/sumitg/flashfill.html
http://research.microsoft.com/users/sumitg/flashfill.html
vivid-synth.org
https://soundcloud.com/mark-santolucito/sets/trumpet-is-to-trombone-as-violin-is-to
https://soundcloud.com/mark-santolucito/sets/trumpet-is-to-trombone-as-violin-is-to

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	4 Aural Distance
	5 Search
	5.1 Gradient Descent
	5.2 Dealing with Non-convexity

	6 Evaluation
	7 Refinement Type Driven Synthesis
	7.1 Refinement Types for DSP
	7.2 Combination of Search Algorithms

	8 Future Work and Conclusions
	References

