
Designing a Community to Support Long-term Interest in
Programming for Middle School Children

Kyle J. Harms, Jordana H. Kerr
Washington University in St. Louis

1 Brookings Dr.
St. Louis, MO 63130

kyle.harms@wustl.edu
jhkerr@wustl.edu

Mark Santolucito
Amherst College

Department of Computer Science
Amherst, MA 01002

msantolucito13@amherst.edu

Terian Koscik
Grinnell College
1127 Park Street
Grinnell, IA 50112

koscikte@grinnell.edu

Michelle Ichinco
Tufts University

Department of Computer Science
161 College Ave.

Medford, MA 02155

michelle.ichinco@gmail.com

Alexis Chuck
Pomona College

Department of Computer Science
333 North College Way
Claremont, CA 91711

alexis.chuck@pomona.edu

Mary Chou, Caitlin L. Kelleher
Washington University in St. Louis

1 Brookings Dr.
St. Louis, MO 63130

mchou@wustl.edu
ckelleher@cse.wustl.edu

ABSTRACT

To facilitate long-term engagement in programming for middle

school children, we developed the Looking Glass Community.

The Community includes both a website and integrated access to

community resources within the novice programming

environment, Looking Glass. We discuss how we designed the

Community to support engagement by providing a source for

initial ideas, support for learning new skills, positive feedback,

and role models.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Training, help, and documentation.

General Terms

Design, Human Factors.

Keywords

programming for children, independent learning, social

networking.

1. INTRODUCTION
The last decade has witnessed a severe decline in undergraduate

enrollment into technology-related fields in the U.S., although

recent trends have shown a slight upward shift [19]. Total

enrollment in U.S. undergraduate computer science programs

increased 10% [19]. Although encouraging, this slight rise in

enrollment will not meet the rising demand for computing skills in

tomorrow's job market [18].

Many rising college students have already identified their own

interests and aptitudes long before enrolling into a degree-

awarding program. Middle school is a critical time when many

children, especially girls, decide whether they are interested in

pursuing math and science-based disciplines [3]. However, few

middle schools can provide such opportunities due to a lack of

time in the curriculum and a lack of K-12 teachers with a

computing background. Programming environments that enable

and motivate middle school students to independently explore

programming concepts could serve as a stand-in for the lack of

computer science classes offered at the middle school level.

However, in order for these environments to be effective

substitutes, children will need to use these tools for extended

periods of time to develop their programming skills.

Long-term engagement is essential for beginners to cultivate

adequate knowledge and an appreciation of programming. Novice

programmers are not able to grasp advanced programming

concepts instantaneously. Middle school students exploring

computer science outside the traditional classroom need an

engaging learning environment in which they feel challenged and

encouraged; otherwise, they might lose interest before any impact

has been made on their understanding and appreciation of

computing. A programming environment to support independent

learners must help to provide motivation and learning support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IDC 2012, June 12–15, 2012, Bremen, Germany.
Copyright 2012 ACM 978-1-4503-1007-9...$10.00.

Figure 1. When opening Looking Glass, the user is first

presented with the (A) challenge selection dialog. Once

opened, the challenge shows in the (B) IDE. A user can later

(C) remix or share their story with the Community.

To encourage long-term engagement in programming for middle

school children, we have chosen to add a community to the novice

programming environment, Looking Glass [13]. We have

designed the Looking Glass Community to help users come up

with ideas for programs, provide opportunities to learn new skills,

facilitate a feedback mechanism for encouragement, and develop

role models for future growth. We have built the Community to

provide a means for users to be exposed to more advanced

programming concepts and to develop a continued interest in

programming. We describe our design decisions for developing

our novice programming community as well as the intended

results of our decisions. We also discuss our future plans:

evaluating the Community and adding additional learning support.

2. BACKGROUND
We introduce the novice programming environment, Looking

Glass, as well as related online communities that have been built

for use with other novice programming environments.

2.1 Looking Glass
Looking Glass is a 3D interactive development environment

(IDE) designed for middle school children [13]. Looking Glass

users program by dragging and dropping programming statement

tiles and selecting parameters from interactive menus in order to

tell a story with 3D characters. Previous research found that

storytelling can motivate middle school children to program [10].

Looking Glass also has a specialized interface designed to enable

non-programmers to explore and reuse code based on the 3D

graphical output of the running program [4].

2.2 Related Work
To keep novice programmers engaged, programming systems

need to provide motivation and learning support. Camps [1],

workshops [10], and clubs [14] can motivate and teach

programming to children; however, most middle school children

to do not have access to such opportunities. Children may be able

to learn new programming skills independently through tutorials

[9], but most users will likely lack the motivation to follow this

strategy long-term. Another approach is to remove the frustration

associated with programming mistakes by using a virtual assistant

which takes the blame for the user’s failures [12].

Online communities are also quite popular to engage novice users

in programming. The novice programming environments Scratch

[15], Greenfoot [8], and Kodu [16] all provide specialized online

communities to motivate their users to program. Yet some

programming environments, like Alice [2] use a traditional text-

based forum to support users. Scratch, Greenfoot, and Kodu

employ program sharing and feedback to keep their users

continually engaged [8, 15, 16]. While these environments

provide positive feedback for new programmers, prior research

suggests that learners without a classroom context need 1) support

for generating ideas [11] and 2) support for extending their

programming skills.

Online communities can provide some support for idea generation

through showcasing users' projects. Looking Glass extends this,

by organizing around challenges designed to provide a story seed

for users without an idea. Existing environments for Scratch and

Kodu enable full program based remixing that consists of

downloading an existing program, modifying it, and resharing.

However, research suggests that new programmers often struggle

to identify the code responsible for a given output behavior [5],

limiting the potential for learning through full program-based

remixing. Looking Glass includes support for users to make

connections between output and the code that causes it and remix

arbitrary sub-selections of code from within a program. We

believe that the integration between Looking Glass and its

community, coupled with our code reuse and exploration tools

creates a uniquely supportive environment.

3. LOOKING GLASS COMMUNITY
Advanced programming skills may be difficult for novice

programmers to acquire without long-term engagement and

learning. Our goal is to keep users motivated and engaged through

Looking Glass over a sufficient period of time to acquire these

skills. In order to support this, we hypothesize that programming

environments should:

¶ Support users in generating an idea for a program.

¶ Help introduce users to new programming concepts and

techniques.

¶ Provide positive feedback from diverse sources.

¶ Enable beginning programmers to find a role model within

the community.

Imagine Emma, a hypothetical middle school student. Emma

really enjoys science class at her school, as do a lot of her friends.

Some of her friends have started creating 3D animated stories

using Looking Glass. Although Emma’s school does not have a

programming class, she hopes she that can figure out how to

create her first story independently. We designed and built the

Looking Glass Community to specifically address these problems

for users like Emma. The Community consists of the existing

Looking Glass IDE (See Figure 1) and a companion website (See

Figure 2). Both of these pieces work in unison to provide

solutions to the problems outlined above.

3.1 Supporting Idea Generation
For users to get the most out of Looking Glass, they need to be

able to generate an idea for a story and then be able to realize that

idea through programming. Previous research with Storytelling

Alice found that users who struggle to come up with a story idea

often do not engage with programming [11]. To help these users

overcome these creative barriers, we have introduced the concept

of challenges. Challenges are empty programs with a previously

constructed scene with characters and a specific objective (See

Figure 2-B). For example, a challenge might show a boy named

Harry in a desert and ask users to explain how he survives.

Figure 2. The (A) Community website with selected

programs; programs are known as worlds to the end user. (B)

Bookmarking a challenge for fast access in the IDE.

We have made challenges a central feature of the Community.

When users are browsing the website they can bookmark

challenges that they might like to attempt later (See Figure 2-B).

Additionally, when users open Looking Glass they are presented

with their bookmarked challenges and the most active community

challenges (See Figure 1-A). We hope that by providing quick and

easy access to challenges, many of the users who had trouble

getting started in Looking Glass will be able start programming

their story more readily. Because challenges start with a pre-made

scene, they may also encourage users to start programming

quickly rather than spending substantial time setting up a scene.

Once the challenge is opened in Looking Glass (See Figure 1-B)

the user can program their story to meet the objective of the

challenge. As soon as the user has finished programming their

challenge submission, they can click the share button (See Figure

1-C) which will allow them to create a preview of their story for

the website (See Figure 3-A). Once the program is shared with the

Community as a challenge submission, the program can be seen

within a list of other submissions in that challenge on the website

(See Figure 3-B).

To get a better sense of how this process works, recall Emma’s

situation. Earlier, she was browsing the Community and found a

challenge that she really liked featuring a boy named Harry who is

lost in the desert, so she decided bookmark it. Later, Emma

opened the IDE and selected the desert challenge from her

bookmarked challenges. Emma now decides that she is going to

resolve Harry’s predicament by programming a story about

resourcefulness in the desert. Since the challenge has already put

together the characters and scene for her, Emma immediately goes

to work programming her story.

3.2 Acquiring New Programming Skills
Emma has now programmed a basic storyline into her challenge

submission. She has decided to help Harry by programming him

to smash a cactus to get water. Because she has just started using

Looking Glass, she has not yet discovered some of the advanced

programming concepts that would enable her to create a really

exciting animation. Despite this, Emma is really driven to make

her story the best she can possibly make it.

To facilitate our goal of long-term engagement with Looking

Glass, we need our users to feel as though they are making

progress and are constantly able to improve the quality of their

stories. We want our users to continually pursue learning

advanced programming concepts such as methods and loops. We

have observed during informal testing that many users will

quickly reach a plateau or complacency with simple programming

concepts. These users typically create simple, sequential programs

containing many repetitive instructions. Few users seem to

independently discover how to make use of other programming

concepts to enable more exciting and compelling animations. In a

traditional learning environment, a teacher or a mentor might

introduce these new advanced concepts to the student. However,

as previously stated, many middle school children do not

generally have access to these resources.

According to previous research on remixing with a novice code

selection interface, a majority of users are able to use advanced

programming concepts independently in their own programs after

having remixed programs which contained the same constructs

[6]. We have introduced the concept of remixing programs into

the Community to leverage this result (See Figure 4). Users can

browse the website and bookmark the programs they like. We

expect many of these programs to have compelling animations

with advanced programming concepts that the user may not have

been previously exposed to. Once bookmarked, users have the

ability within the IDE to remix these advanced programs into their

own using the code selection and remixing interface, Dinah [4].

Emma has been working on her challenge about a boy stranded in

the desert. Previously, when she was browsing the website, she

found a program with a smashing motion that she would like to

have in her own program to help stranded Harry gather water

from a cactus. Emma opens the Remix interface in the IDE and

proceeds to remix the smash animation into her own program. As

she selects the actions she wants to remix, Emma notices that the

original programmer created the smash motion by using a loop

construct. Emma notes that she may be able to use loops in her

own programs to repeat actions.

3.3 Receiving Positive Feedback
Now that Emma has finished programming her story in response

to the challenge about a boy lost in the desert, she would like to

know what other people think of her work. Emma is quite proud

of her story and she is ready to share it with others.

Figure 4. The remix dialog in the IDE; The user can (A)

browse bookmarked programs which they can (B) remix into

their current program.

Figure 3. The (A) share dialog in the IDE. Once a challenge

submission has been shared, the submission will show (B) on

the website with all the other submissions for the challenge.

The Community enables users to easily share their stories to a

website where other Looking Glass users can provide direct

feedback in the form of advice and encouragement. We believe

that by receiving positive feedback, middle school students will be

more likely to stay engaged in programming and continue to use

Looking Glass as a learning tool.

The Community provides a simple way to share programs to the

website to increase exposure and feedback from the IDE. Once

shared, friends and family can share a link to these stories, and

fellow Looking Glass users can browse the stories and provide

meaningful feedback. The website also facilitates project-oriented

conversation by allowing “focused” comments on stories. A trend

within the Scratch [15] community reveals comments which are

often geared toward socialization amongst users and less oriented

toward the shared programs. While we want our users to feel

engaged in the Community, we have tried to design our feedback

forms to cultivate a more program-oriented atmosphere. A

comment on a shared Looking Glass program is always marked

by the commenter as a question, a “like”, or advice. In these three

forms, a comment is expected to provide meaningful feedback for

the author.

The Community also enables less direct forms of positive

feedback. Statistics on shared programs are easily attainable, such

as how many times a story has been viewed. A program that has

been submitted as a submission in a challenge can also be “liked”

by other users viewing that challenge; when a submission is liked,

the author is directly notified, and the submission gains a higher

status within the challenge. A user is also notified when his or her

story has received the highest form of praise: a remix in another

user’s program.

Emma shares her story with the Community and quickly receives

a positive comment from another Looking Glass user. Inspired by

the praise, Emma begins searching for a new challenge.

3.4 Finding Role Models
Research suggests that a lack of appropriate role models limits

girls' participation in computing based careers [17]. The Looking

Glass Community affords the opportunity for users to serve as

role models for each other. Users can easily browse through not

only the projects that their role models have created, but also their

list of influences (i.e. the projects that the role models have

bookmarked and the challenges which they have participated in).

4. FUTURE WORK
We are currently planning user studies to evaluate the Looking

Glass Community. We believe that to enhance long-term

engagement with programming within Looking Glass, we need to

continue to build support for independent learning. Our

development plans include integrating automatic adaptive tutorials

as part of the remix process based our previous work on tutorials

[7]. These tutorials will provide an opportunity to formally

introduce new programming concepts that are encountered

through the existing remixing process. Further, we plan to

integrate mentoring capabilities into the Community to provide

help and assistance to further enable middle school children to

participate in programming.

5. ACKNOWLEDGMENTS
This work was funded by National Science Foundation grant

#0835438 and #1054587. This material is based upon work

supported by the National Science Foundation Graduate Research

Fellowship under Grant No. DGE-1143954.

6. REFERENCES
[1] Adams, J.C. 2007. Alice, middle schoolers & the imaginary

worlds camps. Proceedings of the 38th SIGCSE technical

symposium on Computer science education (Covington,

Kentucky, USA, 2007), 307–311.

[2] Alice: http://www.alice.org.

[3] Gill, J. 1994. Shedding Some New Light on Old Truths:

Student Attitudes to School in Terms of Year Level and

Gender. (1994).

[4] Gross, P. et al. 2011. Dinah: An Interface to Assist Non-

Programmers with Selecting Program Code Causing

Graphical Output. (2011).

[5] Gross, P. and Kelleher, C. 2010. Non-programmers

identifying functionality in unfamiliar code: strategies and

barriers. Journal of Visual Languages & Computing. 21, 5

(Dec. 2010), 263–276.

[6] Gross, P.A. et al. 2010. A code reuse interface for non-

programmer middle school students. Proceeding of the 14th

international conference on Intelligent user interfaces (Hong

Kong, China, 2010), 219–228.

[7] Harms, K.J. et al. 2011. Improving learning transfer from

stencils-based tutorials. Proceedings of the 10th

International Conference on Interaction Design and

Children (New York, NY, USA, 2011), 157–160.

[8] Henriksen, P. et al. 2010. Motivating programmers via an

online community. J. Comput. Sci. Coll. 25, 3 (Jan. 2010),

82–93.

[9] Kahn, K. 1995. ToonTalk(TM)--An Animated Programming

Environment for Children. (1995).

[10] Kelleher, C. et al. 2007. Storytelling alice motivates middle

school girls to learn computer programming. Proceedings of

the SIGCHI conference on Human factors in computing

systems (San Jose, California, USA, 2007), 1455–1464.

[11] Kelleher, C. and Pausch, R. Lessons Learned from

Designing a Programming System to Support Middle School

Girls Creating Animated Stories. Visual Languages and

Human-Centric Computing (VL/HCCô06) (Brighton, UK),

165–172.

[12] Lee, M.J. and Ko, A.J. 2011. Personifying programming tool

feedback improves novice programmers’ learning.

Proceedings of the seventh international workshop on

Computing education research (New York, NY, USA,

2011), 109–116.

[13] Looking Glass: http://lookingglass.wustl.edu.

[14] Maloney, J.H. et al. 2008. Programming by choice: urban

youth learning programming with scratch. Proceedings of

the 39th SIGCSE technical symposium on Computer science

education (Portland, OR, USA, 2008), 367–371.

[15] Monroy-Hernández, A. 2007. ScratchR: sharing user-

generated programmable media. Proceedings of the 6th

international conference on Interaction design and children

(New York, NY, USA, 2007), 167–168.

[16] Planet Kodu: http://planetkodu.com.

[17] Sacco, A. 2008. Young Girls Not Interested in IT Careers

Due to Lack of Female Role Models, RIM Study Finds. CIO.

[18] 2011. Computing Education and Future Jobs: A Look at

National, State, and Congressional District Data. National

Center for Women & Informaton Technology.

[19] 2011. Taulbee Survey Report 2009-2010. Computing

Research Association.

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Looking Glass
	2.2 Related Work

	3. LOOKING GLASS COMMUNITY
	3.1 Supporting Idea Generation
	3.2 Acquiring New Programming Skills
	3.3 Receiving Positive Feedback
	3.4 Finding Role Models

	4. FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

